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INTRODUCTION

This document describes progress in the development of finite element codes for the
prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan
engines. The report consists of nine papers which have appeared in archival journals and
conference proceedings, or are presently in review for publication. Brief summaries of each
paper are given here.

1. Aft Fan Duct Acoustic Radiation. (Journal of Sound and Vibration 1998 213(2),
235- 257)

Details are given of a finite element code which has been developed for the prediction
of the radiated acoustic field from the aft fan duct of a turbofan engine. A new technique
based on a penalty method is introduced to enforce the condition of continuity of acoustic
pressure across the shear layer which bounds the jet.

2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly
Moving Medium. (Journal of Sound and Vibration 1999 224(4), 665-687)

Variable order mapped infinite wave envelope elements are introduced for finite
element modeling of acoustic radiation in a uniformly moving medium. The elements are
applied to the problem of turbofan inlet radiation, and are shown to provide an effective non-
reflecting boundary condition which allows substantial reduction of the FEM mesh in the
near field. Results are shown for the acoustic pressure in the near field.

3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped
Infinite Wave Envelope Elements. (Journal of Computational Acoustics 2000, 8(1),
25-42.)

Variable order mapped infinite wave envelope elements are introduced for finite
element modeling of acoustic radiation in a uniformly moving medium. The elements are
applied to the problem of turbofan inlet and aft fan duct radiation, and are shown to provide
an effective non-reflecting boundary condition which allows substantial reduction of the
FEM mesh in the near field. Results are shown for the acoustic pressure in the near field and
in the far field.



4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound
Propagation in Lined Flow Ducts. (AIAA Paper 99-1821, 1999 ATAA Aeroacoustics
Conference, Seattle. Provisionally accepted for the Journal of Fluid Mechanics)

An analytical solution based on the method of multiple-scales for acoustic
propagation in nonuniform ducts with compressible potential mean flow is compared against
a finite element solution. This provides a useful benchmark for the FEM results in cases
when scattering of the incident mode does not dominate the transmitted acoustic field. In
general this will be true for incident modes which are nearly cut off.

5. Acoustic Propagation at High Frequencies in Ducts. (AIAA Paper 2000-1953, 2000
AIAA Aeroacoustics Conference, Maui, Hawaii)

The problem of acoustic propagation in ducts at high non-dimensional frequencies
is examined. It is found that in FEM models using quadratic elements, good solutions for the
acoustic potential are achieved using the conventional 10 node per wave length rule of
thumb. However, good solutions, via postprocessing, for acoustic pressure require
substantially increased mesh density. Cubic and quartic elements are examined and it is
found that cubic elements offer are more efficient than quadratic elements for acoustic
potential and offer a substantial improvement in acoustic pressure post-processing. Non-
dimensional frequencies up to 100 are considered.

6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential
Flow. (Journal of Sound and Vibration, in review)

The acoustic boundary condition at an impedance wall in a nonuniform duct with
compressible mean flow is implemented in a weighted residuals finite element formulation.
The boundary condition appears to require data which includes the tangential derivative of
the tangential mean flow velocity, the normal derivative of the normal component of mean
flow velocity, and the derivatives of the mean flow density and the boundary admittance
along the boundary. It is shown that it can be substantially simplified to eliminate the
tangential derivatives of mean flow properties and to eliminate completely the normal
component of mean flow velocity. Implementation of the boundary condition is shown to
involve no difficulty.

7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows.
(Journal of Sound and Vibration, in review)

A reverse flow theorem for acoustic propagation in compressible potential flow has
been obtained directly from the field equations without recourse to energy conservation
arguments. A reciprocity theorem for the scattering matrix for propagation of acoustic modes
in a duct with either acoustically rigid walls or acoustically absorbing walls follows. It is
found that for a source at a specific end of the duct, suitably scaled reflection matrices in
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direct and reverse flow have a reciprocal relationship. Scaled transmission matrices obtained
for direct flow and reversed flow with simultaneous switching of source location from one
end to the other also have a reciprocal relationship.

Reciprocal relations provide an excellent benchmark for verification of acoustic propagation
computations. Numerical verification of the reciprocal relationships is given in a companion

paper.

8. Reciprocity and Acoustic Power in One Dimensional Compressible Potential Flows.
(Journal of Sound and Vibration, in review)

A reverse flow theorem for one dimensional acoustic propagation in compressible
potential flow has been obtained directly from the field equations without recourse to energy
conservation arguments. Reciprocity relationships for the scattering coefficients for
propagation are derived. It is found that for a source at a specific end of the duct, suitably
scaled reflection coefficients in direct and reverse flow have a reciprocal relationship. Scaled
transmission coefficients obtained for direct flow and reversed flow with simultaneous
switching of source location from one end to the other also have a reciprocal relationship.
Reciprocal relations and power conservation arguments are used to show that scaled power
reflection and transmission coefficients are invariant to flow reversal and switching of source
location from one end of the duct to the other. Numerical verification of the reciprocal
relationships is given in a companion paper in which multiple mode propagation and one
dimensional propagation are considered.

9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.
(Journal of Sound and Vibration, in review)

A reciprocity theorem for the scattering matrix for propagation of acoustic modes in
a duct with acoustically hard walls or with acoustically absorbing walls has been givenin a
companion publication. It was found that for a source at a specified end of the duct, suitably
scaled reflection matrices in direct and reverse flow have a reciprocal relationship. Scaled
transmission matrices obtained for direct flow and reversed flow with simultaneous
switching of source location from one end to the other also have a reciprocal relationship.
A reverse flow theorem for the equivalent one dimensional propagation model, which is a
good approximation to the three dimensional model at low frequencies, was also obtained.
In this case, using reciprocity and acoustic power conservation arguments it is additionally
found that the acoustic power transmission coefficient is the same for a source at either end
of the duct for a given flow direction. This result leads to an invariance theorem which
relates acoustic power propagated due to sources of equal pressure amplitude at the two ends
of the duct. Numerical verification of these reciprocal relationships is given here for
propagation in axially symmetric (circular and annular) ducts with multi-modal propagation
and at low frequencies when a one dimensional model is appropriate.



Journal of Sound and Vibration (1998) 213(2), 235-257

AFT FAN DUCT ACOUSTIC RADIATION

W. EVERSMAN

Department of Mechunical and Aerospace Engineering and Engineering Mechanics,
University of Missouri-Rolla, Rolla, MO 63401, U.S.A.

AND

D. OKUNBOR
Department of Computer Science, University of Missouri-Rollu, Rolla, MO 63401, U.S.4.

(Received 13 June 1997, and in final form 18 December 1997)

A finite element code has been developed for the prediction of the radiated acoustic field
from the aft fan duct of a turbofan engine. The acoustic field is modelled based on the
assumption that the steady flow in and around the nacelle is irrotational as is the acoustic
perturbation. The geometry of the nacelle is axisymmetric and the acoustic source is
harmonic and decomposed into its angular harmonics. The steady flow is computed on the
acoustic mesh and provides data for the acoustic calculations. The jet is included in the -
steady flow potential flow model by separating the interior and exterior flow outside the
aft fan duct with a thin barrier created by disconnecting the computational domain. The
jet and exterior flow are allowed to merge at a defined distance downstream. In the acoustic
radiation model continuity of acoustic particle velocity is implicitly satisfied across the
shear layer by careful treatment of the surface integral which appears in the finite element
method (FEM) formulation. Pressure continuity is enforced by using a penalty constraint
on the shear layer. A model for locally reacting acoustic treatment provides a boundary
condition on the duct walls. An attempt has been made to limit reflections on the artificial
baffle introduced to limit the computational domain. but this is only moderately successful.
An old. but reliable frontal solution routine has been updated with considerable impact

. on computational time. Example calculations are given which show the success achieved
in satisfying the complicated interface conditions on the shear layer and the characteristics
of the solutions at relatively high frequencies where the refinement of the mesh becomes

a limiting consideration for practical computations.
: © 1998 Academic Press Limited

. INTRODUCTION

In approach and cutback conditions the acoustic field from high by-pass ratio turbofan
engines is dominated by tonal noise generated by blade/vane interactions and radiated
forward from the nacelle inlet and to the rear from the aft fan duct. In order to meet noise
control goals active and passive techniques can be employed to control the source
mechanisms and to attenuate acoustic propagation in the inlet and fan exhaust ducts.
Methods for the prediction of the effects of various noise control measures on far field
acoustic radiation are required in the design process. The investigation reported here is
directed toward the development of a robust computational scheme for the prediction of
the acoustic field attributed to tonal sources typical of blade/vane interaction in the aft
fan duct. It is intended to be coupled to a suitable model of the source mechanism.
The model developed is an extension of computational methods which were developed
for inlet radiation [I-4]. The inlet radiation model was based on the assumption of

0022-460X,98/220235 + 23 $25.00/0/sv971480 © 1998 Academic Press Limited
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236 W. EVERSMAN AND D. OKUNBOR

irrotational acoustic perturbations on an irrotational steady flow. A finite element code
was developed which could accurately model the geometric details of an axisymmetric inlet
as well as the steady flow field in and around the inlet, including the effect of forward flight.
Rapid advances in the capabilities of work stations has made it a realistic goal to accurately
predict the acoustic field around realistic geometries at realistic frequencies. Reported here
is the development of a similar model for aft radiated noise. The most significant extension
is the representation of the important effects of the fan duct jet imbedded in the
surrounding flow which includes forward flight effects. The presence of the jet introduces
interesting conditions which must be imposed on acoustic propagation across the shear
layer which confines it. The methods for achieving these conditions in the context of the
finite element method (FEM) are discussed in detail here.

2. FORMULATION OF THE ACOUSTIC RADIATION PROBLEM

The aft radiated acoustic field from a turbofan nacelle is described by a potential
formulation as previously introduced for inlet acoustic radiation [1-4]. Figure 1 is a sketch
of the important geometrical features of the aft fan duct and centre body. The nacelle has
a forward flight Mach number Mo, which at large distances is equivalent to a uniform flow
directed away from the fan exhaust duct exit plane. Near the nacelle this velocity field is
non-uniform. The exhaust flow, defined at the source plane by Mach number M,, emerges
as a potential flow jet and extends down stream confined by a shear layer separating it
from the exterior flow. The shear layer is terminated at a defined length at which point
the jet and external flow merge as potential flows. The potential flow merging of the jet
and exterior flow at the end of the shear layer produces a localized steady flow anomaly
which has not been observed to substantially influence the acoustic radiation.
Computations are to be carried out using the FEM in a domain including the interior of
the aft fan exhaust duct and an exterior region made finite by invoking a radiation
condition at an outer computational boundary and by introducing an artificial baffle
oriented to produce a minimal effect on the acoustic radiation field.

The nacelle geometry and the steady flow field are assumed to be axially symmetric. The
noise source is assumed to be harmonic in time and is decomposed into its angular modal
content. allowing a two-dimensional representation of the acoustic field in an (x, r) plane
through the nacelle axis of symmetry. The solution domain is shown in Figure 2. It is the
x, r plane in cylindrical co-ordinates. The source plane is designated by C. The fan or exit
guide vane source is input on this plane by specifying complex amplitudes of incident duct
modes (see references [1—4] for details of the implementation of the source boundary

\_ﬁxt&ior flow

Shear layer

Source
plane Interior flow
-

Figure 1. Sketch of the geometry of the aft fan duct, emphasizing the exhaust flow and shear layer.
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Figure 2. Computational domain showing the boundaries and regions.

condition.). The nacelle outer surface is C,. The outer boundary of the solution domain
C., is a circle which is a constant phase surface for an acoustic source located at the origin.
On this boundary a radiation condition is specified. Wave envelope elements [1-4} are used
in the far field to reach the outer boundary with minimal cost in mesh refinement. An
artificial baffle C, limits the solution domain well upstream of the fan exit plane and is
chosen to be swept in such a way that a minimal effect on the acoustic field is created.
This baffle is a ray from the origin and in principle at large distances from the source it
should be non-reflecting, although near field effects do lead to reflection. The placement
of the baffle must be considered in terms of the likely orientation of the radiated field. The
baffle can be eliminated if computational efficiency is not a limiting factor. The shear layer
C, which separates the potential flow jet from the potential exterior flow is a rigid boundary
for the calculation of the steady flow field and is a surface across which appropriate
continuity conditions must be satisfied in the acoustic calculations.

The starting point for the formulation of both the steady mean flow and the acoustic
perturbation consists of the mass and momentum equations and the energy equation in
the form of the isentropic equation of state:

%%-}-V'(ﬁV):O. (0
év [ . p Y
S (V-P)V=—=Vj,  E={L], 2.3
=+ ) 57P o <p0> (2,3)

where g, p and V are fluid properties pressure, density and velocity, at this point in
dimensional form. and p, and p, are reference values of pressure and density.
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A weak form of the field equations begins with equation (1) in which solutions for
and V are sought in the class of continuous functions which satisfy the weighted residual

relation
HJ[VW-(;W)_W%]d:/:”va-nds (@)

for every function W/(x) in the class of continuous functions. The surface integral is over
the boundaries of the domain of solution and n is the unit normal out of the domain. In
the finite element discretization process which follows, the surface integral must also be
interpreted at each subdomain boundary, namely the boundaries of the individual
elements. The physical boundaries of the solution domain include the boundaries of the
nacelle. including the source plane, the rigid structural boundaries. and absorbing
boundaries such as acoustic treatment. Other boundaries are the artificial baffle introduced
to limit the solution domain and the outer boundary of the solution domain at which a
radiation condition is applied. All of these boundary conditions are introduced through
the surface integral. The boundary integral is. observed to involve the mass flux normal
to the boundary. The integral is therefore in terms of an essential conservation quantity,
and this is typical of weak formulations in the framework of the FEM. For boundaries
between subdomains (elements) in the FEM discretization at which there is no surface of
discontinuity the integral produces no net contribution. This follows because on such
boundaries the integrals on either side of the boundary produce contributions equal in
magnitude and opposite in sign. In the present problem this applies to all boundaries
between elements, although, as will be shown, a careful interpretation of the surface
integral must be carried out to establish that it vanishes across the shear layer separating
the outer flow field from the jet with a discontinuity in tangential steady flow. In particular,
it seems to be necessary to start from the yet to be linearized form of the weighted
continuity equation (1), and to carefully linearize it to account for the fact that on the shear
layer, which is displaced due to acoustic perturbations, the integral is interpreted to be
evaluated on the surface of discontinuity in tangential steady flow velocity with the unit
normal defined to reflect this. If the field equation is linearized before the weak formulation
is established, an essential contribution to the boundary integral is lost.

3. BOUNDARY CONDITIONS ON THE SHEAR LAYER

Figure 3 shows the idealized interface between the exterior flow and the jet. The surface
of discontinuity in tangential velocity is assumed to be displaced from the mean position
by

Ar(x, 8,1y ={(x, 8, 1), (5)

where {(x, 8, ¢) is an acoustic perturbation. The normal to the interface is tilted due to
the slope of the shear layer approximately by

an, = —C;Cn,, (6)
X

where n, can be written in terms of the unit vectors n, n,, which are normal and tangent
to the undisplaced shear layer, in the form

ptt
ol

n,=n-——=—-n,. (7)
dx
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Figure 3. Geometry of the shear layer interface. showing the acoustically displaced boundary between the jet
and exterior flow.

The orientation of the unit normals here are consistent with the surface below the shear
layer for which the normal out of the fluid is in the direction of the positive normal fluid
particle velocity, but a similar argument applies if the surface above the shear layer is
considered. The tangential component of the normal to the shear layer is an acoustic
perturbation quantity.

The interface conditions across the shear layer can be determined by examining the mass
flux and momentum flux at a moving surface of discontinuity. A particularly good
explanation is given by Karamcheti [5]. The essential results in the case of a discontinuity
in the velocity tangential to the surface of discontinuity are:

(Vu - V\‘) Iy = (V/ — V;) = O, ﬁu(vu - Vf) sy — ljl(Vz — V:) n, = 0, (8~ 9)
V. m(V,~V)-n— 5V -m(V,— V) n=p —p.. (10)

Here V, and V, are the fluid velocity above and below the discontinuity and V, is the
velocity of an element on the surface of discontinuity. g, and g, are the fluid densities above
and below the discontinuity and g, and g, are the corresponding pressures. Equation (8)
follows from the tangential component of the momentum equation and equation (9) from
the mass continuity equation. Equation (9) is satisfied automatically due to equation (8).
Equation (10) is the component of the momentum equation normal to the discontinuity.
With equations (8) and (10) it is determined that

Bu = pi. (11)

which is the condition that pressure be continuous across the shear layer. The linearized
version of this would require the acoustic perturbation in pressure to be continuous as well
as the pressure of the steady flow.

A linearized version of the surface integral of equation (4) is required for the acoustic
analysis which follows. The fluid velocities are replaced by their perturbation forms
V.=V.n +v,and V, = V,n, + v,, where V, and ¥, are the mean flow tangential velocities
above and below the discontinuity. The densities are replaced by g. = p, + p. and
p) = p. + p; with the possibly different mean densities given by p, and p,,. The acoustic
quantities are now p, and p,. It is also important to note that the velocity of an element
of the surface of discontinuity is an acoustic quantity and is therefore denoted by V, = v,.
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Equation (7), and equation (8) in linearized form, are equivalent to the familiar conditions
of continuity of particie displacement,

ac G¢ B o
=248 =S+ Ve (12, 13)
ot "ox ct CX

The linearized form of the surface integral of equation (4) on the upper and lower surfaces
of the shear layer can then be obtained by using equation (7) and equations (12) and (13)
(and accounting properly for the evaluation of the integral on the surface above the shear

layer):
H W(EV) - m, dS = ” W, (TL; ds. (14)
] :

5 N

H W(GV), - na dS = —H W, % ds. (15)
S S,

Y [

It is apparent from equations (14) and (15) that along the shear layer the net contribution
of the surface integrals will vanish if the steady flow densities above and below the shear
layer are the same. If they are different, as in the case of a hot jet in a cold outer medium.
there will be a net contribution which is effectively a distributed source on the shear layer
with a strength proportional to the difference in the steady flow densities. This is
completely consistent with equation (9). It is also consistent with the rigorous analysis
given by Myers [6].

4. LINEARIZED WEAK FORMULATION

A linearized weak formulation is obtained by continuing with equation (4) for which
the linearization of the boundary integral has been examined. Acoustic propagation and
radiation is modelled based on the assumption that the mean flow in and around the
nacelle is irrotational and that the acoustic perturbation is also irrotational. The potential
formulation makes it possible to introduce mean flow and acoustic perturbation velocity
potentials. Acoustic perturbations are assumed on the steady mean flow such that
b=¢.+¢, p=p,+pand p=p +p. The acoustic perturbations are assumed to be
harmonic in time and in the angular co-ordinate such that p(x,r. 0. ) = p(x,7) g =m0
px.r 8,0 =p(x,rye™ ™ and ¢(x.r, 8,1) = $(x, r) e~ The acoustic perturbation
in the shear layer position is also assumed to be harmonic in time and the angular
co-ordinate yielding J(x. 8, ) = {(x)e" - The steady flow density and velocity are p.,
V¢,. In linearized form, the weak formulation of equation (4) becomes [4]

ﬂ[{vw (oW + pVd,) —inWpydV =in, U Wi(p, — p.)C dS
Y
3,

+ ” Wip.V¢ + pFd,) ndS.  (16)

The weighting functions are taken as W(x,r, g) = W(x.r)e™. Perturbations are in the
form of angular harmonics proportional to e~ representing the decomposition of the
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solution periodic in 6 in a Fourier Series. The angular mode number is a parameter of
the solution. The first surface integral on the right hand side is on the shear layer S, and
the second surface integral is over all remaining surfaces bounding the domain. Notice that
the unit normal for the second integral is the normal out of the domain at the surface in
question. The weak formulation continues with the linearized momentum equation (4]

p=—2ing+ 7o Vo) (17)

which is used to replace p in equation (16), the linearized equation of state,
p=cp, : (13)

which is used to produce an alternative form of the momentum equation in terms of
acoustic pressure,

p=—ping+ Vo 7o) (19)

Equation (19) is used to define acoustic pressure difference on the shear layer and to
post-process the field solution for ¢ to obtain the acoustic pressure field. The acoustic
particle velocity and acoustic velocity potential are related according to

v=To. (20)

The linearization process also produces the weighted residual formulation for the steady

flow,
mvw.(p,m)dvz ”W(p,V(j),)mdS, o)

and the steady flow momentum equation in terms of the speed of sound,
c=1-UZ gy rp — a2 (22)
r 2 r r RENFA L] -

and in terms of the steady flow density,

Piy=1

p, = [1 - (L%—Q(qu, P, — Mi)} . (23)

Equations (16) through (23) are in non-dimensional form where ¢ is the acoustic potential.
. is the local mean flow (reference) potential, p is the acoustic density, p, is the local mean
flow density, and ¢, is the local speed of sound in the mean flow. All quantities are made
non-dimensional by using the density in the far field, p., the speed of sound in the far
field, ¢.. and a reference length which is defined as the duct radius at the source plane.
R. where acoustic modal amplitudes are defined. This plane could be the fan plane or the
exit guide vane plane, but it is not restricted to these locations. The acoustic potential is
non-dimensional with respect to ¢, R, and the acoustic pressure with respect to p.c;.
Lengths are made non-dimensional with respect to R. Time is scaled with R/c,, leading
to the definition of non-dimensional frequency n, = wR/c,; w is the dimensional source
frequency and M, = M, is the Mach number in the far field representing the forward flight
effect.

10
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Equation (21) is the weighted residual formulation for the calculation of the
compressible potential flow within and around the nacelle. Equations (22) and (23) are
subsidiary relations that can be used in an iterative solution which at each stage uses a
density field derived from the previous iteration step. F¢,, ¢,, p, are required data for the
weighted residual formulation of the acoustic problem. In the results reported here only
the first iteration of this process is used to define the potential flow field. This is
accomplished by solving the incompressible problem and then computing a variation in
steady flow density and speed of sound.

The second surface integral in equation (16) provides the boundary conditions on the
duct walls and on the source plane. The modelling of duct acoustic treatment in the context
of this integral is discussed in a later section. The acoustic source is specified by the complex
amplitudes of acoustic duct modes at the source plane. On this plane the FEM modal
values of acoustic potential are replaced by the complex amplitudes of the acoustic
potential modes by an eigenfunction expansion. The incident acoustic modal amplitudes
are input and the reflected modal amplitudes are computed as part of the solution. Details
of this procedure are available in references [1-4].

The same surface integral provides the mechanism for introducing the boundary
conditions on the artificial baffle and the non-reflecting boundary condition at large
distances on the outer boundary of the computational domain. These details are also
explained extensively in references [1—4].

Acoustic pressure and particle displacement are continuous across the shear layer. The
continuity of particle displacement is implicit in the handling of the surface integral on
the shear layer. Continuity of pressure must be explicitly enforced. The implementation
of this condition will be discussed presently.

5. COMPUTATIONAL MESH

A particularly sensitive issue which must be resolved is the construction of a mesh which
is consistent with the geometry requirements and which can be generated automatically
from data describing the nacelle and centre body. It is essential that the mesh be structured
to minimize the bandwidth for the linear equation solver. The major constraining feature
is that the trailing edge of the fan duct is thin or cusped. In addition. the near field mesh
must evolve into a smooth transition to the far field wave envelope mesh.

In order to meet all of these requirements. a mesh which combines quadrilateral and
triangular elements has been used. Figure 4 shows the details of the near field mesh. The
interior of the duct and the extended jet uses conventional eight-node quadrilateral
elements. Most of the exterior region is also composed of quadrilateral elements. However,
a fan shaped region of six-node triangular elements is used to allow a transition around
the sharp trialing edge. Primarily due to the constraint on the mesh structure for
minimizing bandwidth, this transition would not be possible with rectangular elements
without introducing severe distortion in the neighbourhood of the trailing edge. The far
field mesh utilizes the wave envelope element concept [1-4], and presents no problems. A
relatively coarse near and far field mesh is shown in Figure 5 and the wave envelope
element region can be seen. Note in Figure 4 that the exhaust duct trailing edge is reflexed,
representing the most severe case.

Mesh generation produces twe mesh connectivities. For the potential flow code, velocity
potential is discontinuous across the shear layer dividing the extended jet from the external
flow. Elements are therefore disconnected across the shear layer. For the radiation code,
acoustic velocity potential is also discontinuous across the shear layer. Elements above and
below the shear laver have additional degrees of freedom on the shear laver boundaries

11
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Figure 6. Bridging elements on the shear layer.

using a penalty constraint on the shear layer, and it is not necessary to introduce pressure
as an additional variable on the shear layer. However, it has been found convenient to
introduce six-node ‘“‘rectangular” transition elements of zero thickness between the
standard elements above and below the shear layer for generating the “penalty element
stiffness matrices”. In order to maintain consistency in the meshes for the potential flow
calculations and radiation calculations. these elements are accounted for in mesh
generation for both codes. Details of the elements on the shear layer are shown in Figure 6
where for an example a bridging element is inserted between a triangular element above
the shear layer and a rectangular element below the shear layer.

6. STEADY FLOW CALCULATIONS

A potential flow code generates the steady flow field in and around the aft fan duct.
Incompressible potential flow has been assumed as a first approximation. Variations in
density and speed of sound are based on the isentropic equation of state and
incompressible velocity field with specified conditions on Mach number, density, and speed
of sound in the far field. It is within the framework of the general formulation to treat
the potential mean flow as compressible, and the present approach can be viewed as the
“zeroth” iteration of the compressible isentropic case. Fully compressible isentropic mean
flow has been used by the first author in acoustic propagation and scattering calculations
in pipes in which no far field radiation is modelled. In the type of problem considered here
the computational overhead required for the several iterations necessary to produce a
compressible mean flow has not been cousidered justifiable at the present stage of
development.
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Figure 7. Potential field for the steady flow from the aft fan duct and in the surrounding flow field. This case
corresponds to M, =0-5 and forward flight velocity My = 0-2.

The potential flow field has been structured to include flow in a jet region downstream
of the fan duct exit plane. This has been done with the introduction of a “rigid” duct
boundary representing the fan exhaust shear layer which extends the prescribed length of
the jet. The rigid boundary is introduced by permitting the velocity potential to be
discontinuous across the shear layer. At the downstream end of the shear layer the
discontinuity in velocity potential is terminated and merging of the interior and external
flows is permitted. The merging can produce very high velocities and reverse flow near the
termination of the shear layer. This is smoothed out by restricting the velocity near the
end of the shear layer to neither go above a reference velocity which is determined midway
along the underside of the shear layer (in the jet) nor to go below a similarly determined
velocity on the upper side of the shear layer (in the outer flow). In the near field mesh of
Figure 4 the shear layer boundary can be seen to extend downstream about two duct radii.
The merging distance is adjustable. and is chosen to provide sufficient distance for full
effect on the acoustic radiation, and to move the perhaps unrealistic merging region away
from the important part of the acoustic field. Computations for the steady flow field are
carried out on the same mesh used in the acoustic case. This is done so that the steady
flow data is produced in a form compatible with the acoustic mesh. The mesh is invariably
much more dense than would be required for the steady flow calculations, however, the
problem is symmetric, and the solution routine is considerably faster than for the
comparable acoustic problem (about three or four times faster for large meshes).

A typical potential flow field is shown in Figure 7, where the jet and surrounding forward
flight effect contours of velocity potential are clearly shown.

7. ACOUSTIC PRESSURE CONTINUITY ON THE SHEAR LAYER

The linearized weak formulation of equation (16) has the subsidiary condition of
continuity of acoustic pressure across the shear layer. This condition is not easily satisfied
because the formulation is in terms of acoustic velocity potential. However, equation (19)
provides a connection between the acoustic velocity potential above and below the shear

14
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layer which can be exploited to implement the continuity condition by using a penalty
method [7].

The important features of the penalty method can be described relatively easily.
Equation (19) and the condition pressure continuity on the shear layer are used to obtain

) i . P,
dp=p.—p = pr,(m,cb/ + M, %) — p,u<1r],d),, + M, %) = Q. (24

Equation (24) applies computationally on the shear layer. r = r,. x, € x < x;, where r, is
the radius of the axially symmetric shear layer and x,, x, are the axial co-ordinates of the
left and right ends of the shear layer; x, coincides with the trailing edge of the nacelle at
the fan exit plane. The subscripts / and u denote values of the steady state and acoustic
quantities below and above the shear layer. In the finite element context, the acoustic
potentials ¢, and ¢, can be written notionally in terms of a global interpolation matrix
[N(x)]. For example,

Pi(x) = [N(x)]g, (25)

where ¢, is the vector of nodal values of ¢;(x) below the shear layer. The interpolation
matrix [N(x)] is a row matrix with elements N,(x), i = 1, NV, where NN is the number
of finite element nodes and N,(x,) =1, i=/, N.(x)=0.i+#j,j=1, NN. The substantial
derivative operators in equation (24) are defined such that, for example.

Di(¢r) = p,,<iq, + M, 6%>¢" 26)

In vector—matrix format,
Dy(p1) = [N()[Di]¢r, (27)

where [ D] is a diagonal matrix of operators p,, (i, + M; d/¢x). Equation (24) can be written
as

[N, ()¢ .17 = ((NOOID:] — [NCOIDD ¢, @17 = 0. (28)

The modified interpolation matrix [N,(x)] has elements which can be viewed as
interpolating Ap(x) from nodal values of the acoustic potential on either side of the shear
layer. The weighted residual of equation (28) is formed on the shear layer using as
weighting functions elements of [N¥(x)], which are the complex conjugates of the
interpolation functions. This yields

ﬂ [V OV, ()] dS ¢, @] = 0. (29)

~
3.

This is a weighted residual (or variational) statement that 4p vanishes on the shear layer.

It produces a “stiffness matrix” which is consistent with this statement. If this is appended
to the weighted residual formulation of equation (16) with a large multiplier 4, it forces
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the weighted residual formulation to have a solution constrained by equation (24). The
modified weighted residual statement is written as

~

HJ VW -(p.V +pVo.) —inWp,dV =iy, ﬂ Wp, — p.)C dS

Vv
S

+ J‘J Wip.Vp + pVeo.) ndS

- A” Wapds. (30)

S,

The weighting functions W/(x) introduced in equation (30) are the pressure difference
interpolation functions identified in equation (28). The penalty integral. equation (29), is
introduced along the shear layer and produces penalty stiffness matrices which bridge the
shear layer and include nodal values of acoustic potential on both sides of the shear layer.
This is most easily implemented in the finite element context by introducing transition or
bridging elements on the shear layer as shown in Figure 6. These elements are of zero
thickness with three nodes on the top and three on the bottom to connect to the three nodes
on the conventional triangular or quadrilateral elements above and below the shear layer.
Finite element assembly proceeds as with other elements in the mesh. No new global nodes
are introduced and there is no change in the bandwidth of the formuiation nor to the
sequence of operations in the equation solving procedure.

The boundary integral on S represents natural boundary conditions which must be
imposed on the other boundaries of the domain. The far field boundary C, is at a large
distance from the nacelle and is a non-reflecting surface on which a radiation condition
is applied via the boundary integral. This surface is the outer boundary of wave envelope
elements which allow a transition from a fine mesh near the nacelle to a very coarse mesh
in the far field. Most of the nacelle and centre body surfaces are rigid, where the normal
component of acoustic particle velocity vanishes. In addition, the normal component of
the mean flow velocity also vanishes and the flow tangency condition requires that
V¢, - = 0, eliminating the boundary integral. A portion of the fan duct and centre body
is acoustically treated. On these surfaces an impedance relation is specified, and this can
be introduced through the boundary integral. The acoustic source is also introduced using
the boundary integral. Details of the imposition of natural boundary conditions can be
found in references [1-4].

In the results presented here there is no difference in steady flow density across the shear
layer. The boundary integral on S, which arises from considerations of conservation of
acoustic particle displacement across the shear layer therefore vanishes.

8. ACOUSTIC TREATMENT ON DUCT WALLS

In the FEM formulation described here provision has been made for acoustic treatment
on the duct wall and on the centre body. In the present context the acoustic field is
described in terms of an acoustic potential formulation, while the boundary condition
relates pressure and particle velocity. The implementation is described in this section.

A locally reacting acoustic lining material specified by its frequency dependent
impedance or admittance is placed on an interior surface of the duct. The boundary
integral of equation (30) is the mechanism by which the boundary condition imposed by

16
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this acoustic treatment is introduced. On surfaces where acoustic treatment is present the
normal component of mean flow velocity vanishes and the lining boundary integral
simplifies to

I = ” Wp. V¢ -ndS, (31)

St

where v-n = F¢ - n is the normal component of acoustic particle velocity, v. The unit
normal n is directed out of the computational domain and therefore into the acoustic
treatment. The acoustic treatment is described by a local impedance refationship which
connects acoustic pressure to a conceptual wall displacement velocity. [n general. the types
of acoustic trearment of interest are porous and the wall intself does not displace but the
fuid in the pores does. [t is the fluid velocity in the porous wall. directed normal to the
wall. which is referred to as wall displacement velocity. The impedance relationship is of
the form

P_z-
Uy

(32)

’

X f—

where p is the non-dimensional acoustic pressure and v, is the non-dimensional wall
displacement velocity, directed into the wall. The impedance Z is a prescribed function of
frequency and is non-dimensional with respect to p, ¢, that is. the dimensional impedance

- would be prc.Z. A is defined as the non-dimensional acoustic admittance. The relation
between the fluid particle velocity at the wall and the wall velocity is one of continuity
of particle displacement. This yields

von=+ (?—* + M, ﬁ) (33)
at ox

where ((x, 8, 1) = {(x) e =™ is the wall displacement normal to the wall mean position,
positive directed into the wall, and related to v, by v, = &¢/8t. M, is the steady flow velocity
at the wall, non-dimensional with respect to ¢,. The choice of positive or negative sign
depends on whether the acoustic treatment is on the outer or inner wall of an annular duct.
It is assumed that all lined surfaces have negligible curvature in the direction of the duct
axis so that the rigorous description of the flow/surface kinematics {6} is simplified. With
harmonic time dependence,

Y-n=-
§

r

1 /(. J
r Vi wm U "4
(1)1 +M m_)L (34)
The relation between acoustic particle velocity and acoustic pressure is
. ¢ -
von= i(m, + M., E>AP' (395)

The relation between acoustic pressure and acoustic velocity potential is provided by the
acoustic Bernoulli equation of equation (19). Equation (35) can be rewritten

_1{ d . d
+i'7r (m, + M, 6x>[p,f1<lr/, + M. 5.Y>¢j]'

vy-n
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The boundary integral becomes

- UerV.nd5= in, H WApih dS + H WApf;V[u%%dS

Si 2 3

. X

0 i 2 2 :
+ JJ Wp M. e [Ap. 0] dS - p J(‘ Wp. M, s [Ap,M., 3 :| ds. (37

L 57
The upper and lower sign choice depends on whether the outer or inner wall integral is
considered. The first two integrals on a boundary where acoustic treatment is present are
easy to implement in the finite element formulation because only continuity of acoustic
potential is required. The admittance, A, is assumed piecewise continuous and non-zero
on a portion of the interior surface of the duct. An integration by parts, which is essentially
an application of Stokes” Theorem on the interior surface, is performed to make the last
two integrals compatible with the weak formulation. The integral representing the
boundary condition on interior surfaces can now be written

F pr, Wv-ndS=in Jf WApip dS + Jf WApfz\/[.\g—(i ds

St L St

4 ‘ i PEVIAN ‘
- JJ-(Ap,qb)é} (Wp.M..) dS + - JJ<Ap,;\/[W 5.\:> = (Wp.M.)dS. (33)

L St

Equation (38) is in a form which is appropriate for application of standard finite element
techniques to generate “‘boundary matrices™ which are appended to the element stiffness
matrices of elements whose outer boundaries represent acoustically treated surfaces.

9. AN ABSORBING BAFFLE

A restriction of the present FEM mesh is the presence of the batfle which is used to limit
the computational domain. presumably with little reduction in the quality of the solution.
[t is assumed that the baffle is swept back at least 90° from the angle of peak radiation,
however, this condition is often violated because it requires a mesh generation change to
accomplish it. In theory the baffle is non-reflecting at large distances from the nacelle since
it is a ray extending from the origin [2]. Near the intersection of the baffle and the nacelle
the baffle is a reflecting surface and its presence has the possibility of contaminating the
solution with spurious reflections. Experience has shown that the baffle has little effect on
the peak lobe in the radiation pattern if the 90° rule is adhered to. However, there has
been interest in using the inlet code and aft radiation code to generate the SPL directivity
on the full 180° arc around the engine. This would be accomplished by separately obtaining
the inlet and aft radiation results and then superposing them. Presumably, the peak lobes
fore and aft would be little affected but the region at 90° to the engine axis would be
critically dependent on a legitimate superposition of the inlet and aft results. This is not
possible to achieve because of the baffle, unless it is completely non-reflecting.

An investigation has been made of the possibility of making the baffle at least partially
non-reflecting. This has been done by introducing absorption on the baffle. As in the case
of the nacelle acoustic treatment. this is done through the surface integral on § in
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equation (30). On the baffle it is assumed that the flow is adequately represented by the
uniform Mach number M, = M .i. This is true far from the nacelle, and is approximately
true near the nacelle. The acoustic density perturbation is given by equation (17) evaluated
with p, = | and ¢, = |, assuming that far field steady flow conditions apply on the baffle.
The surface integral on the baffle can then be written as

H W(p.V + pVe,) ndS = ” W{V(,b ‘n—(M, - n)(%‘? +M, - quﬂ ds. (39

Sh »

where n is the unit normal of the computational domain. The impedance condition on the
baffle surface is defined simply as
Zy
p=

= v n. (40)
PxCx

Zy/poce is the non-dimensional impedance and Z,/p.c. = /4, where A is the
non-dimensional admittance. This impedance condition corresponds to no real physical
situation but rather is introduced to provide absorption on a notional boundary through
which there is a steady mean flow. The acoustic Bernoulli equation (19) and the definition
of the acoustic velocity potential

v="¢ (41)

leads to the conclusion that on the baffle,

o PxCa (00 Ny o
7é n=—t= (aﬁ“”” Vd)). (42)

The boundary integral can therefore be written as

H W(p,V + pVé,) ndS = —H w{(ﬁfzc— + M, - n><%<? + M. - quﬂ ds.

Sy »

(43)

The boundary integral of equation (43) is applied only in the near field portion of the baffle.
In the wave envelope region the theoretically non-reflecting character of the far field baffle
is left unchanged. The introduction of a locally reacting impedance boundary on the baffle
cannot be expected to produce complete absorption any more than on the wall of a duct.
As will be shown, only a modest absorption can be achieved.

10. POSTPROCESSING

Postprocessing of the acoustic velocity potential solution using the acoustic Bernoulli
equation (19) to obtain acoustic pressure can be carried out in two ways. The approach
which is most efficient computes acoustic pressure at the element nodes using the element
shape functions. The nodal values are then averaged, to account for the fact that
derivatives of potential are not continuous across element boundaries in the FEM
formulation. For sufficiently fine meshes this produces acceptable results. Results presented
in this paper are obtained by this method.

A second method available for postprocessing acoustic velocity potential to obtain
acoustic pressure carries out the calculations at Gauss points in each element. The Gauss
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points are known to be points at which optimal accuracy is achieved in the calculation
of derivatives and therefore in calculation of acoustic pressure. The number of Gauss
points is generally less than the number used in the Gauss integration in the formulation
of the element stiffness matrices. The array of solution points on the grid constructed in
this way can then be plotted as contours of equal acoustic pressure or equal sound pressure
level using one of several available commercial plotting packages.

11. SOLUTION TECHNIQUES

The principal advantage of the FEM formulation described here is that it is
computationally relatively efficient and therefore provides a useful tool for design
calculations. This efficiency decreases as the non-dimensional frequency of the acoustic
source increases, requiring a proportional increase in the mesh density and a
disproportionate increase in computation time (by approximately the square of the ratio
in mesh density). For this reason it is appropriate to give some observations on the linear
equation solving routine which accounts for almost the entire computational time.

Previous fan noise radiation codes [1-4] used a frontal solver due to Irons [8]. This was
extremely efficient in the use of active memory, partly because of considerable data transfer
using direct access [/O in storing and retrieving element stiffness matrices in the
assembly/solution procedure and in retrieving mesh and steady flow data. The resulting
direct access files were subsequently read many times in the various FEM operations and
in postprocessing. This efficiency in storage was offset by a significant cost in execution
time. Nacelle design and source modelling have become the primary uses of the codes and
execution time is a primary issue in a work station environment in which storage has
become a much less limiting factor. Direct access operations are efficient from a
programming standpoint, but inefficient in I/O time. In the version of the radiation code
reported here all direct access I/O has been eliminated in favour of active storage or
sequential 1/O. This has resulted in as much as 50% reduction in computation time,
dependent mainly on available fast memory.

Experiments with several popular iterative solution routines show that for the
two-dimensional structure of problems considered here the direct solvers are always faster.
This is consistent with the experience of other investigators [9]. There are indications that
iterative solvers can be faster for similar problems in a three-dimensional geometry. The
choice has been made to retain the modified Irons frontal solver.

12. EXAMPLE CALCULATIONS

The example calculations shown here are obtained on a mesh with about 27 000 degrees
of freedom which is shown in Figures 4 and 5. This mesh becomes inadequate for
non-dimensional frequencies much in excess of 5, = 25, and with the element distribution
shown does better for acoustic radiation toward the sideline (high angular mode number
or high radial mode number). Anguiar mode order corresponds to the value of m in the
angular Fourier component e™™. Radial modes for a specified angular mode are
enumerated beginning with 7 = 1. The geometry of the aft fan duct is generic, including
an extended centre body and thin fan duct lip, in this case reflexed. The exterior Mach
number is M, = 0-2 and the jet Mach number at the source plane is M, =0-5.

The first result shows the success of the penalty method in implementing the condition
of continuity of acoustic pressure across the shear layer. This is most effectively shown at
low frequency because the acoustic field is relatively simple and the discontinuity in
acoustic potential and continuity in acoustic pressure is easy to see. The frequency chosen
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Figure 8. Contours of equal acoustic potential with M, = 0-5, M, = 0-2. Reduced frequency 7, = 50, input
angular mode m = 2, radial mode n = [, no acoustic treatment. Acoustic potential is discontinuous across the
shear layer.

is 7, = 5 with an angular mode m = 2 and radial mode n =1 input with unit pressure
amplitude. The mesh is quite adequate for this low frequency. Figure 8 shows the radiated
field in terms of contours of constant acoustic potential magnitude superimposed on the
computational domain. In this example only five contours are produced to simplify the
plot. The contours range from 15 dB above the maximum level on the outer boundary to
15 dB below. In Figure 8 it is clearly seen that the acoustic potential is discontinuous across
the shear layer. Figure 9 shows similar contours of acoustic pressure and these are seen
to be continuous across the shear layer. The pressure has been obtained by post-processing
the potential field by using equation (19) with FEM interpolation at the nodes. Pressures
thus obtained are averaged at common nodes. It is important to note that nodes across
the shear layer are not common and the pressure across the shear layer is not averaged.
The effectiveness of the penalty method is demonstrated by this example, as is the quality
of the solution at this low frequency. Figure 10 shows an additional method of presentation
of the radiation directivity. This represents calculations of sound pressure level on a
circular arc at a radius of 10 duct radii from the origin, normalized to 100 dB maximum.
In this case it emphasizes how broad the principle lobe is near the peak.

The results of Figure 10 can be used to compare the peak radiation angle in the principal
lobe in the far field to predictions obtained using ray theory. A code has been written which
is based on the analysis of Rice and Saule [10] for estimation of the radiation directivity
from an exhaust duct. [t is based on an extended analysis since it considers annular ducts
while the original work of Rice and Saule considered only circular ducts. Propagation
angles in the duct are determined from a formal eigenvalue/eigenfunction analysis and the
convection and refraction effects are included as in reference [10]. It is predicted that the
group velocity in the duct at the specified frequency and in the specified mode, 7, = 5,
m=2.n=1,is at 34-7°, and the phase velocity is at 51.2°. The peak propagation angle
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Figure 9. Contours of equal acoustic pressure with M, = 0-5, M, = 0-2. Reduced frequency n, = 5-0. input
angular mode /m = 2. radial mode n = 1, no acoustic treatment. Acoustic pressure is continuous across the shear

Relative SPL (dB) at R= 10.0 duct radii
Polar SPL directivity

Figure 10. Radiation directivity on a circle of 10 duct radii centred on the computational origin. M, = 0-50.
My=0200=50, m=2 n=1,
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in the far field is estimated to be 49-5°. The observed angle of peak radiation in Figures
7 and 8 is around 50°, but the peak is so broad that it is difficuit to pick the angle precisely.
The correlation is excellent, although it must be pointed out that the mesh origin (0-5 duct
radii back from the duct exit plane) is used in defining the directivity in this example. The
Rice/Saule analysis would be based on an origin at the duct exit plane. Because the peak
lobe is so broad there is little point in examining the effect of the origin shift on the stated
comparison. This will be done in the next example which produces a sharper peak lobe.

A higher frequency case with a lower angle of peak radiation is the second example.
In this case the non-dimensional frequency is . = 25 and the modal input ism=10,n=1
This is getting close to the limit of resolution for the mesh. Figures 11 and 12 show the
two types of presentation for acoustic pressure. Figure 11 showing contours of constant
SPL, while generally reasonably clean, emphasizes the assertion that the limit of resolution
is close at hand. The breakdown of the mesh adequacy always appears in the near to
intermediate field first and is usually related to mesh density in the region between the near
field and the wave envelope region. The number of elements required in the generally radial
direction is critical, and this can be minimized by bringing the wave envelope region in
as close as possible. In the aft radiation case the jet interferes with this, and the wave
envelope region must start far enough out that the jet is nearly entirely merged with the
exterior flow. Figure 12 shows the polar directivity based on an origin at the exit plane
(non-dimensional x = 0-5) and demonstrates that these far field calculations are generally
better than the near field because of the wave envelope interpolation. This mesh has been
pushed to 7, = 35 without complete failure, and has the characteristic that it produces
better results for modes which radiate well to the sideline than for those which radiate at
relatively small angles to the axis as in these examples. This probably results from the
complicated interaction of transmission and reflection of modes at near grazing incidence

70

-10.0 -7.5 -5.0
X/A
Figure 11. Contours of equal acoustic pressure with M, = 05, Mo = 0-2. Reduced frequency #, = 250, input
angular mode m = 10, radial mode n = I, no acoustic treatment. ACOustic pressure is continuous across the shear
layer.
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at the shear layer. The mesh shown in Figures 4 and 5 has proven to be a good generic
structure to work with.

Figure 12 can be used to compare the peak radiation angle in the principal lobe in the
far field to predictions obtained using ray theory. It is predicted that the group velocity
in the duct at the specified frequency and in the specified mode, n, = 25, m = 10, n = 1.
is at 27-4°, and the phase velocity is at 39-4°, The peak propagation angle in the far field
is estimated to be 43-9°. The observed angle of peak radiation in Figure 12 is around 42"
and is adjusted for the origin shift to the exit plane. The correlation with the Rice/Saule
result is good. particularly when it is noted that flow conditions along the shear layer in
the FEM calculations are not uniform, and within the jet region the Mach number is
reduced below M, = 0-5 due to the gradual reduction in radius of the centre body. The
effect can be observed if an average Mach number M, = 0-45 in the jet is used in the
Rice/Saule approximation. The ray prediction would yield 41-9° which is about the same
as the FEM prediction which accounts for the non-uniform Mach number in the jet.

An example of the effect of acoustic treatment on the duct walls is also shown in Figure
12. A locally reacting lining with normalized impedance and admittance given by
Z =1221 —i0-122, 4 =0-811 +10-081 is assumed in the high frequency case. The
impedance/admittance is optimum for the 7, =25 M, =03 m=10. n=1 mode.
The outer wall of the fan exhaust duct and the centre body are lined over a length of
0-916 R beginning at 0-074 R forward of the assumed source plane. The attenuated
directivity shown in Figure 12 reveals an attenuation of as much as 5 or 6 dB at polar
angles below the shifted principal lobe which is now at about 45°. What was once a
relatively well-defined principal lobe is now considerably broadened and beyond 45 there
are areas in which the SPL is increased, primarily due to filling in of interference notches.
The angle shift of the principal lobe is consistent with the fact that the effect of the acoustic
treatment would be to increase the angle of the phase velocity and group velocity vectors
(lower the cut-off ratio) within the duct.

Finally, Figure 13 is used to show the effect of an attempt to reduce the effects of
reflection from the baffle. A resistive “lining” with non-dimensional admittance
A = 0-8 + i0-0 has been placed on the baffle in the region of conventional elements (the
wave envelope elements in theory should not produce reflections). It is seen that there is
an observable change in SPL at large polar angles (near the baffle) and in the region near
the exhaust axis where the directly radiated field is at low SPL. Since it is not known what
the true reflection free directivity should look like. no conclusion can be drawn other than
the baffle does have an effect on the directivity at large angles, and that the effect is
modestly changed when the baffle is made dissipative. Perhaps of more importance is the
fact that virtually no effect is observed near the principal lobe. suggesting that the baffle
has correctly been assumed to be non-intrusive in this region.

While not entirely definitive, the results shown here suggest that the FEM model of aft
fan radiation captures the known refraction effects of the shear layer very well. Extensive
bench marking of the code against experiments has been carried out by other investigators
[11, 12]. Comparisons of calculations and measurements have been very good.

13. CONCLUSION

A finite element model for acoustic propagation and radiation within and exterior to
the aft fan duct of a high by-pass turbofan engine has been developed. It is based on the
assumption of irrotational acoustic perturbations on an irrotational steady flow. The jet
is modelied in the steady flow calculations by a potential flow constrained by a shear layer
and allowed to merge with the surrounding flow downstream of the fan duct exit plane.
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The formulation is restricted to axisymmetric geometries and harmonic sources described
by their angular and radial modal content. The condition of acoustic particle displacement
continuity across the shear layer is shown to be satisfied by proper interpretation of a
boundary integral which occurs in the FEM formulation. Continuity of acoustic pressure
is implemented by introducing a penalty method based on the relationship between
acoustic pressure and velocity potential. Example calculations have shown that the
continuity of pressure is accurately enforced. Resolution of accurate solutions at high
non-dimensional frequencies is limited by mesh density which has implications on storage
requirements and execution time. In the present study computations with over 17 000
degrees of freedom have been shown to produce reasonable results up to the reduced
frequency 7, = 25. Doubling the frequency would require an approximate doubling of the
density of the mesh. '
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Variable order mapped infinite wave envelope elements are developed for
finite-element modelling (FEM) of acoustic radiation in a uniformly moving
medium. These clements can be used as a non-reflecting boundary condition for
computations on an infinite domain in which a radiating body is immersed in
a moving medium which is essentially undisturbed outside of the near field. An
additional result of this study shows that the mapped wave envelope elements
provide a boundary condition equivalent to stiffness, mass, and damping matrices
appended to the inner mesh. By choosing the transition between the standard FEM
mesh and the mapped infinite wave envelope as a surface of constant phase the
mass matrix is caused to vanish identically. This has implications for transient
FEM modelling of acoustic radiation. A demonstration of the characteristics of
mapped infinite wave envelope elements 1s given in the context of acoustic
radiation from a turbofan inlet for which benchmark results are known,

C 1999 Academic Press.

1. INTRODUCTION

Modelling of acoustic radiation is usually complicated by the requirement that
prediction of the acoustic field is required in some finite subdomain of an infinite
domain. This requires that computations be limited to the subdomain with
a non-reflecting boundary or that the infinite domain be mapped ou to a finite
computational domain. In finite element modelling this has led to the study of
a number of forms of infinite elements [1-3], wave envelope elements [4. 5], and
mapped infinite wave envelope elements [6-9]. The several forms of infinite
elements in some sense map the infinite domain to a finite domain. Wave envelope
elements restrict computations to a large but finite domain bounded by
a Sommerfeld radiation condition. The non-reflecting boundary is reached from an
inner standard finite-element domain via large elements in which the shape functions
are augmented to reflect decay with distance from the source and the temporal and
spatial character of outgoing waves. The attributes of infinite elements and wave
envelope elements are combined in mapped infinite wave envelope elements.

0022-460X,99/290665 + 23 $30.00/0 ¢ 1999 Academic Press
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666 W. EVERSMAN

Mapped infinite wave envelope elements have been investigated extensively for
acoustic radiation in a stationary medium. They have certain apparent advantages
as compared to standard wave envelope elements. In the case of harmonic
radiation, the most significant advantage is the possibility of adjusting the order of
the elements to fit the requirements of the problem. Formulation of the elements
reveals the possibility of including within the element shape function an explicit
dependence on inverse powers of the distance from the apparent acoustic source,
consistent with theoretical results [8]. This fact allows the introduction of mapped
infinite wave envelope elements well into what would normally be considered the
acoustic near field, reducing mesh refinement and dimensionality. The shape
functions in mapped infinite wave envelope elements can accommodate nearfield
effects, and this fact can be enhanced by adjusting the order of the interpolation in
the elements to fit the problem requirements. A second advantage in the FEM
formulation using the mapped infinite wave envelope elements 1s that the
Sommerfeld radiation boundary is infinitely far away and is never explicitly
appended as a natural boundary condition. Astley e ul. [9] also demonstrated the
applicability of mapped infinite wave envelope elements to problems in transient
acoustic radiation, a feature which has not been exploited in standard wave
envelope elements. With an appropriate choice of mesh geometry they show that
mapped infinite wave envelope elements provide a boundary condition which is
well suited for time-marching solutions. The advantages of the mapped infinite
wave envelope elements are not without cost, and the trade-off comes in the form of
increased band width of the discretized field equations that is introduced by high
order mapped elements. This may offset efficiency gains achieved by reduction of
the extent of the computational near field and therefore the standard FEM mesh if
bandwidth-sensitive solvers are used.

The study reported here extends the variable order mapped infinite wave
envelope concept to uniform steady flows, principally in connection with
aeroacoustic problems related to turbofan acoustic radiation. This is a direct
extension of the development of Astley et al. [8, 9]. They present their formulation
in the context of problems in three dimensions in Cartesian co-ordinates. The
application here is in a cylindrical co-ordinate system reduced to two dimensions
by taking advantage of periodicity of the solution in the angular co-ordinate. The
development of the mapped wave envelope elements is completely general and not
restricted to this co-ordinate system. Harmonic radiation is considered explicitly;
however it is shown here that as in the case of a stationary medium, with a judicious
choice of the mesh geometry, the structure of the mapped elements becomes
favorable for transient calculations.

2. AN APPLICATION TO TURBOFAN INLET ACOUSTICS

An important problem of acoustic radiation in a moving medium is available in
the study of the acoustic field of a turbofan inlet. The noise due to turbo-machinery
sources within the inlet is propagated in the inlet and radiated to the (infinite) far
field. Acoustic propagation and radiation occurs in a high-speed potential flow
which is the net effect of flow into the inlet and the forward flight of the inlet. In the
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Infinite element region
or

Wave envelope element region

X

Standard element region

Figure |. Computational domain showing genetic geometry of the nacelle and boundaries and
regions used in the finite element. wave envelope, and mapped infinite wave envelope element
formulations.

steady flow far field (perhaps nearer to the inlet than the acoustic far field) acoustic
radiation occurs in a uniformly moving medium. It is required to make
computations to predict the radiated field in a finite subdomain relatively near the
inlet. This has been approached in the past by terminating the computational
domain with a Sommerfeld condition on a boundary reached by the use of wave
envelope elements [3, 10-12]. Here it is intended to investigate the application of
mapped infinite wave envelope elements to obtain closure of the computational
domain.

For turbofan inlet acoustic radiation the nacelle geometry and the steady flow
field (representing flow into the inlet and forward flight) are assumed to be axially
symmetric. The noise source is assumed to be harmonic in time and is decomposed
into its angular modal content, allowing a two-dimensional representation of the
acoustic field in a plane through the nacelle axis of symmetry. The solution domain
is shown in Figure 1. It is the x, r plane in cylindrical co-ordinates. The source
plane is designated by C,. The source is input on this plane by specifying complex
amplitudes of incident duct modes [5, 10-12]. The nacelle outer surface is C,. On
this boundary, steady flow and acoustic particle velocities have a vanishing normal
component. An artificial baffle C, formed by a ray from the origin limits the
solution domain. The sweep angle is chosen in such a way that minimal effect on the
acoustic field is created [13]. The domain of computation is divided into two parts.
In an inner region a standard finite-element mesh is used; in the present problem
eight-node serendipity elements with the condition that four to five elements per
wavelength are required. The near field is terminated on a boundary C, beyond
which farfield elements are used. In previous studies, this region was large but finite
and bounded by the surface C, a circle which represents a constant-phase surface
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for an acoustic source located at the origin. On this boundary, a radiation
condition was specified. Wave envelope elements [3, 10-12] were used in this
region. In the present study, the farfield region is extended to infinity and a single
layer of mapped infinite wave envelope elements is used to provide a reflection-free
boundary on C, and to compute the acoustic field in the far field as required. The
boundary C is not part of the solution.

3. FINITE ELEMENT FORMULATION

The geometry of the inlet and steady flow field in and around the inlet is uxially
symmetric. The acoustic field is not axially symmetric but is represented as periodic
in a cylindrical co-ordinate system with x being the axis of symmetry. r the
cylindrical radius in a circular cross-section at x = 0, and ¢) the angular co-ordinate.
Solutions are sought in anguiar harmonics of a Fourier series enumerated by the
angular mode number m. This reduces the solution domain to a two-dimensional
x, r plane.

The starting point for the formulation of both the steady mean flow and the
acoustic perturbation consists of the inviscid mass and momentum equations and
the energy equation in the form of the isentropic equation of state. The acoustic
field equations are obtained by considering small perturbations on a steady
irrotational mean flow characterized by density p, and speed of sound c,. This
formulation makes it possible to introduce a steady flow velocity potential ¢, and
an acoustic perturbation velocity potential ¢. Acoustic perturbations in pressure,
density and velocity potential are harmonic in time with frequency », and harmonic
in the angular co-ordinate # of the form p(x,r)e™ ™™ p(x e ="
@ (x, r)ei™~m In linearized form, the weak formulation is [3, 10-12]

[ JW(pr Vb + pVé,)-ndS (1)

v

” J{VW'(pr Vo + pVe,) —in,WpdV =
v

The weighting functions are taken as W (x, r, 8) = W(x, r)e". Angular harmonics
proportional to e~ represent the decomposition of the solution periodic in 0 in
a Fourier series. The angular mode number m is a parameter of the solution. The
surface integral is over all surfaces bounding the domain. The unit normal for the
surface integral is out of the domain at the surface in question. The weak
formulation continues with the linearized momentum equation

p= —%(iw + Vo, Vip) 2)

r

which is used to replace p in equation (1). The linearized equation of state.

p=cp, (3)
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is used to produce an alternative form of the momentum equation in terms of
acoustic pressure,

p=—plin,¢ + Vo, V). 4

The acoustic particle velocity and acoustic velocity potential are related according
to

v= V. (5)

The linearization process also produces the weighted residual formulation for the
steady flow,

” jvw‘(p,m)dhf JW(prm)-nd& 6)
v S

and the steady flow momentum equation in terms of the speed of sound,
v—1
c3=1—(f—2)[\7¢,-\7¢,—M;], (7)

and in terms of the steady flow density,

o 1y~ 1)
pr=[1—“ . ”(V@-%—Mi)}' . ®)

Equations (1)-(8) are in non-dimensional form where ¢ is the acoustic potential, ¢,
is the local mean flow (reference) potential, p is the acoustic density, p, is the local
mean flow density, p is the acoustic pressure, and ¢, is the local speed of sound in the
mean flow. All quantities are made non-dimensional by using the density in the far
field, p.,, the speed of sound in the far field, ¢, and a reference length which 1s
defined as the duct radius at the source plane, R, where acoustic modal amplitudes
are defined. This plane could be the fan plane or the exit guide vane plane, but it is
not restricted to these locations. The acoustic potential is non-dimensional with
respect to ¢, R, and the acoustic pressure with respect to 0 »C%. Lengths are made
non-dimensional with respect to R. Time is scaled with R/c., leading to the
definition of non-dimensional frequency #, = wR/c,;  is the dimensional source
frequency. M, = M, is the Mach number in the far field representing the forward
flight effect.

Equation (6) is the weighted residual formulation for the calculation of the
compressible potential flow within and around the nacelle. Equations (7) and (8)
are subsidiary relations that can be used in an iterative solution which at each stage
uses a density field derived from the previous iteration step. V¢,, ¢, p, are required
data for the weighted residual formulation of the acoustic problem. In the results
reported here only the first iteration of this process is used to define the potential
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flow field. This is accomplished by solving the incompressible problem and then
computing a variation in steady flow density and speed of sound.

The surface integral in equation (1) provides the boundary conditions on the duct
walls, and at the source. The acoustic source is specified by the complex amplitudes
of acoustic duct modes at the source plane. On this plane, the FEM nodal value of
acoustic potential are replaced by the complex amplitudes of the acoustic potential
modes by an eigenfunction expansion. The incident acoustic modal amplitudes are
input and the reflected modal amplitudes are computed as part of the solution.
Details of this procedure are available in [5, 10-12].

A previous study [13] shows that the baffle can be positioned to produce
practically no effect on typical acoustic radiation patterns. Therefore. there Is no
contribution from the surface integral on the baffle. In previous studies. the surface
integral provided the mechanism for enforcing the Sommerfeld radiation condition
on C,. In the present application of mapped wave envelope elements the surface
integral is never explicitly introduced on a far-field boundary because the assumed
form of the solution in the outer region implicitly satisfies the Sommerfield
condition.

[n terms of acoustic potential the weak formulation is, from equations (1) and (2),

J ‘ fp—a (VW - Vo—(M,- VW )M, Vo) + in,[W(M, V$)—(M, VW)é]
vV

r

— i WodV =J

5

jgg{cf W Vh — M, W (M, Vo) — in, M, W¢}-ndS, (9)

r

where the local non-dimensional steady flow velocity is M, = V¢,. Equation (9) is
the weak formulation in the entire domain, however in the steady flow far field it
simplifies considerably with the steady flow given by M, = M, and p, = l.¢, = L.
Furthermore, the surface integral on C., has no contribution in the formulation
proposed here because there is no longer any surface on which a Sommerfeld
radiation condition is to be applied. The weak formulation in the steady flow far
field is

cW ¢ C oW ,
[j J{VW- Vo — M%CA—S.? + irz,A/[O(WO:—d) _; >— ng qu}dl/ =0.
Jy ¢x Cx 0x  Cx

(10)

In the cylindrical co-ordinate system used here, some liberty is taken in defining
the gradient operations as

W W
vw =+ e e, v =
CX cr r

—1+
X cr

ép. ¢
b, 0,

~ P, (11.12)
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and suppressing factors ¢* ™ which arise as part of the weighting and trial
functions as explained in connection with equation (1). These factors cancel
throughout all of the products in equations (9) and (10). Equations (11) and (12)
reflect the harmonic angular dependence of ¢ and W. The non-dimensional
velocity M, in equation (10) is the Mach number of the forward flight.

In the steady flow near field, where the flow is non-uniform, equation (9) is
discretized using standard finite-element techniques. Example calculations
presented in this study are based on two-dimensional rectangular isoparametric
serendipity elements with eight nodes.

In the steady flow far field where the flow is essentially uniform. equation (10)can
be discretized using wave envelope elements or by introducing mapped infinite
wave envelope elements to obtain closure of the computational domain. [t is the
formulation in terms of mapped wave envelope elements which is of interest here.

4. THE INFINITE MAPPING

Because of the harmonic dependence on the angle & the originally
three-dimensional weak formulation reduces to two spatial co-ordinates x and r.
The x, r plane is shown in Figure | where the boundary C, separates an interior
region in which standard FEM descretization is used from an outer region in which
mapped wave envelope elements are used. The exterior region must be in the steady
flow far field. Figure 2 shows an element in the outer region in the x-r plane of the
cylindrical co-ordinate system. The element is bounded by the surface C, on which

/ To infinite

Mapped infinite WE elements

Standard element region

Figure 2. Details of the finite/infinite-clement interface.
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Rays

Ly

(=1,-1)
(a)

Figure 3. Geometric details of the mapping between the infinite element and the parent element: (a)
parent element, {(b) mapped wave envelope (WE) element.

it conform with an element of the conventional mesh. The edges of the element are
straight lines, extending outward more or less radially, though not necessarily from
the axis system origin nor necessarily from a common origin. For the elements used
in this investigation which conform with eight-node serendipity elements in the
conventional mesh (each with three nodes on C,), a third radial line between the
two edges is required. For simplicity, each of the three straight lines will be referred
to as rays. In Figure 1, the outer surface C, is the notional outer boundary of the
element at infinity. A ray of an element has an apparent origin at a point X, o
which in general can be different for each ray. The element maps to a parent
element in the &, 7 plane, —1 < ¢ <1, —1 < n < 1,as shown in Figure 3. The rays

of the element map to the ¢ axis with 7 = — 1, 0, 1 in the parent element according
to
— 2 1+< -2 1+¢
X = - X, + Xy, r= ~ry + >ra, 13, 14
X 1_C\1 1——;‘(' r 1_gr1 1__;r“, { )
Since
-2 1+ e
S+ —— =1, 15
et ¢ (15)

the mapping is unchanged by an origin shift. Therefore. it can also be used to yield
a mapping relative to the source at X, ro:

~2
1 —

L+
1 —

My
Ty

X — Xy = (X — Xo) + (x2 — Xo), (16)

i

AT
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-2
"—"021_'("1—"o)+

1 +

TNy

=(r, — rg). (17

e

The node x,, r; is defined by the requirement that the element conform with the
conventional element on the boundary C,. A particularly useful form of the
mapping is obtained if the node at x,, r» is located such that x, — xy = 2(x; — Xg)
and r, — ro = 2(r; — rg). This makes the mapping simplify to

2{x{ — Xp) 2Ar, —rg)
x—.\'0=1—v0 r—rozl—,o. {18)
N -1 =2
The mapping has the properties that = — 1 maps t0 X — X = X; — Xg.
r—ro=r, —rg, <=0 maps to x — Xy = 2(x; — xg), r —ro=2(r, —rg) and

& =1mapstox — xo = % .r —ry = % The mapping along a “ray” transforms the
infinite domain in the physical co-ordinates to the domain — 1 << <! in the
parent element. The inverse mapping is

My, — v 2r, —r
2(x, Xg) 5:1_—(’1 'o). (19)

i=1- ;
X — Xp r —ry

It is easily deduced that this mapping along a “ray™ also applies for the polar

radius of the point x, r relative to Xg,ro,r, = /(x — Xo)* + (r —ry)°, in the
form

r, =Y =T (20)

and

Iy (1)

This form emphasizes the role of the base node x,, ry as a “source” for the “ray™ and
the distance r, as the polar distance from the source.

The infinite-element mapping is completed by a conventional mapping on
—1 < < 1. The element shown in Figure 3 has six nodes numbered as shown.
Nodes 1-4 are corner nodes and nodes 5 and 6 are mid-side nodes on C, and C,
(the locus of the nodes x,, r;). The mapping is of the form

x =[M(Enlx, r=[IM(En)]r. (22)

where [M (&, n)] is a row vector of six shape functions M (S, n) and x. r are vectors of
nodal values of x, r. With the nodal numbering scheme used in Figure 3 the explicit
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form of the shape function is

: -2 . < 1+
Mi(&m =05in = De—.  Ma&n) = 05107 = hr—.
. ) — 2 ] ] [+
M3(&on) =05n0n + 1)1 — M (& n) =030 + 1)1 —.
: : L — 2 . 1+ & .
Ms(En)y = (1=l + njl —. Mo(E ) = (1=l + ) — (23)

The mapping described here is simply another view of the results presented by
Astley et al. [8] specialized to the cylindrical co-ordinate system.

In preparation for development of a mapped infinite wave envelope element for
a uniformly flowing medium it can also be noted that the results of
equations (16)~(21) can be extended to other “distances” along a ray yielding
a similar mapping. For example

2R,
1 —

R={(lx=xo) + B r—r) = (24)

g

where Ry = /(x; — xo)” + B2(ri —ro)* and f* =1—M" and M is the Mach
number of the uniformly flowing medium. A second useful mapping is

W =EI5[—M(x—xo)+R] = lzfl:, (25)

o

where y, = (1/8%)[ = M(x; — xo) + R, ]. These observations are important to the
extension of the application of the mapped infinite wave envelope element to
acoustic radiation in uniform steady flow.

5. SOURCE SOLUTION IN UNIFORM FLOW
The weak formulation of equation (10) for acoustic radiation in a uniformly
moving medium is consistent with the differential equation

4

0 ¢\ s
ot cx
A fundamental harmonic source solution for this equation is
(—in B (= Mx~_ X +p57r)

G =em . 27
X B
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where f = /T — M? and r? = y* + =*. This can be verified by direct substitution
or by noting that the transformation of variables

. M
=X p=r 0= Rl + ft (28)

B’ B
reduces the convected wave equation (26) to the standard wave equation
Grpjor = Vig (29)

in the transformed variables which has a fundamental harmonic source solution

Je
i&,‘e—lﬁ\ X't-r

¢ =eﬂ ———'———”,__———/_, = '30)
JXT

Equation (27) is then obtained replacing the change of variables of equation (28). In
terms of the definitions of equations (24) and (25), the fundamental harmonic
source solution for source location at xg, ro 1S

p=cm (31)
R

6. SHAPE FUNCTIONS IN THE INFINITE ELEMENTS

Shape function in the mapped infinite wave envelope elements can be
constructed to display the characteristics of the fundamental source solution at
large distances from the source in the form

e-in,hl/(‘)—%)

— —im8 — —imB 5 —iu(xy 11
¢ = Q(x)e R, ————R(x) P(x)e e , (32)

where the notation x = (x, 7} and u(x) = 7,(f(X) — ¥, ) is used and is similar to the
notation used by Astley et al. [8]. u(x) is the phase relative to the surface C,
separating the infinite-element region from the region of standard FEM
interpolation and i, emphasizes that this phase is dependent on the specific “ray”
on which equation (32) is evaluated. i, would be a constant for the entire
infinite-element region if C, is a surface of constant ¥ (a “constant-phase surface”),
but in general would vary from node to node on C,. The most direct way to make
Y, invariant for the mesh is to construct the mesh so that for all infinite elements
X,, Fo (the “source point™) is common and C, is a surface of constant i (*phase”)
relative to the common “source”. The mesh used by Eversman et al. [5, 10-12] has
this property (xo,ro are at the mesh origin) and is used in examples in this
investigation. At large R, equation (32} should have asymptotic behavior in
R consistent with equation (31). The function P(x) should therefore display the
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Rays

Apparent
sources

Figure 4. Example of an infinite element with nine x interpolation nodes and six # mapping nodes.
This element produces an asymptotic interpolation in the far field of third order in R, /R.

appropriate asymptotic behavior in R, should be capable of accounting for
nearfield effects, and should interpolate in the standard FEM context in the
n co-ordinate in the parent element.

In terms of &, n co-ordinates of the parent element, u(x) and R(x)/R,, have simple
forms suggested by equations (24) and (25);

. L.
wE ) = 2, = (1), (34,35)

In equation (34), ¥, can be a function of # on the inner boundary of the element
¢ = — 1, interpolated relative to nodal values on C,. The function Q(x) in
equation (32) which accounts for nearfield behavior in the infinite element can be
represented by a standard FEM interpolation

Q& m =[S m1Q. (36)

where Q is a vector of nodal values of Q(x). There are six nodes involved in the
infinite mapping and these can be used as nodes in the interpolation of Q(x). It will
generally be appropriate to use more than the mapping nodes by including extra
nodes along the rays as shown in Figure 4 which demonstrates the introduction of
one extra node midway between the mapping nodes on each ray and suggests
a convenient nodal numbering scheme.

The shape functions for the element shown in Figure 4 with the additional node
midway between the mapping nodes on a given ray are based on nine-node
Lagrangian interpolation with the extra nodes mapped to ¢ = — 3. In general, P(x)
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is interpolated within an element according to
P ) =[N n]Q, (37)

where the shape function N;(¢, #), the shape function corresponding to node i, is
constructed from the mth-order Lagrangian shape function for node i, LT, n),
according to

P& n) = NG, n) =31 = OLIE 0. (38)

Some liberty is taken with notation here; LP(&, n)is defined so that p is the order
of interpolation (number of nodes) along the ¢-axis. Along the n-axis the order
conforms with the order used in the standard FEM region, which is 3 in the
two-dimensional serendipity elements implemented in the model reported here. It s
interesting to note that N;(¢, n) is unity only for nodes with & = — 1 (the Lagran-
gian interpolation functions have the value unity for all nodes). The vector of nodal
values Q corresponding to the evaluation of Q(x) only corresponds to nodal value
of P(x) for nodes on the surface C,. Because of this, and because of the phase term
e " in equation (32), which is unity only on the surface C,, in the infinite elements
the solution vector does not correspond to nodal values of acoustic potential at
most of the nodes. The potential can be easily reconstructed by postprocessing.

The form of the shape functions defined by equation (38) can be interpreted in
global co-ordinate by using equation (24) to show that

1 —&=2(R,/R), &=1-=2(R,/R). (39)

Equations (38) and (39) suggest that the shape functions in global co-ordinates
along a ray are of the form

Pi(x,r) = 71(R1/R) + 72(R1 /R + 73(Ry /R + -+ + 7Ry /R, (40)

n is determined from the order of Lagrangian interpolation. For a p node
interpolation leading to polynomials in £ of degree p — 1 it is determined that n = p.
A similar result was shown in the case of radiation in a stationary medium [38].

Reference to “variable order” mapped infinite wave envelope elements relates to
the choice of the order of the Lagrangian interpolation and therefore to the powers
of R,/R in the asymptotic expansion for the shape function. Conceptually this
could be extended to any order, but as pointed out by Astley et al. [8] there is
a limit imposed by the onset of numerical problems probably related to il
conditioning if the order is too high.

7. WEIGHT FUNCTIONS IN THE INFINITE ELEMENTS

Astley et al. [8] show that in order for the boundary integral introduced in the
weak formulation to have no contribution on the boundary at infinity it is
necessary for the weighting functions to be functions of {R/R(¥)}™1, with g > L.
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The weight functions are of the form

IRV
(b — Q(x)euw(R_{l—) einb =) = D(x)P(x)e it @ iu() (1)

X)
where
D(x) = (R;/R(x))! (42)
In the parent element,
Do) = (120 (1 = &) (43)

The weight functions are the complex conjugates of the shape functions multi-
plied by the additional decay term. In the present investigation ¢ = 3. The notation
here has been chosen to correspond to that used by Astley er al. [8] to emphasize
the similarity with their development in the case of a stationary medium. Only the
details hidden in the definitions of ¥ and R are different.

8. THE WEAK FORMULATION IN THE INFINITE-ELEMENT REGION

The weak formulation of equation (10) for the infinite-element region in which
the steady flow is necessarily uniform is obtained by using equations (32) and (43)
defining the assumed form of solution and the weight functions in the infinite-
element region. The gradient operations on the assumed shape and weighting
functions vield

Vo = (VP —in, PVe (44)
and
VW = (DVP* + in,DPVu + PVD)e". (45)
where the notation
‘P, GP 2P P i
vp= i P Mpe ppr =L Ly LM pe,  46.47)
C‘C cr r C\ cr I

is used as in equations {11) and (121) because of the factors e*™ which are
suppressed. By using standard finite-clement operations, equation (11) can be
formulated at the global level to yield complex element “stiffness™ matrices (K]
defined in terms of real mass, stiffness and damping matrices,

[Ku‘] = —n7[My;] +in[Cy] + [Kid, (48)
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T P iy ’P :
o[ oo -
v gx ox | or ér

2D P,
P[(I—M)L—D_i ‘ (H}}dV, (49)

where

éx Cx or or

'; 2 ol
M,,:” JDP,-PJ{I —[(1 - M )(“‘) + (‘—‘-‘) + z‘wﬁ—“}}dv (50)
v éx cr éx
) Cuch; 6P ¢cucP,
C”':J[‘J{DP[“—M) {ccx c\+6_t‘—5—rj}
vV . .

P 0P, CuiP
[(1— YO M‘-7——+—5‘—L : }PJ

CcX OX 0x cr
L, @D ¢D @D
[(1-&1 kel Y —C;E}R-Pj}dlf. (51)
cX CY O‘C cr ¢cr -

The definitions of the stiffness, mass, and damping matrices of
equations (49)-(51) are implemented at the element level using the infinite mapping
to the parent element. These results reduce to those of Astley er al. [8] when the
medium is stationary and when account is taken of the operations which are
particular to the cylindrical co-ordinate system. It is not difficult to generalize to
a three-dimensional Cartesian co-ordinate system.

9. AN IMPORTANT PROPERTY OF THE MASS MATRIX

The mass matrix of equation (50) vanishes if the surface C, separating the
standard finite-element region from the infinite-element region is a surface of
constant phase for an apparent acoustic source location xo, ro which is common for
all elements. This is shown by referring to the definition of u(x),

w(x) = n,(p(x) — ), (52)

where

Y(x) = (/)= M(x — xo) + R], R=./(x = x0)® + *(r —ro)*. (53,54)
Since it is stipulated that C, is a constant phase surface, it follows that is
constant. The apparent source location is the same for all elements, leading to the

conclusion that x,, ro are constants. It can then be verified that

(1 — M) (6u/éx)* + (0w/dr)* + 2M (Cp/ox) = 1 (35)
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which from equation (50) leads to the result

This is consistent with the findings of Astley et al. [8] in the case of a stationary
medium when the surface C, is a sphere, a constant-phase surface in this case. While
of some interest in the time harmonic formulation considered here, the vanishing of
the mass matrix is of central importance when a time-dependent formulation is
implemented in the stationary medium case. It remains to be established that this is
equally important in the case of a uniformly moving medium.

10. TURBOFAN INLET EXAMPLE

Figure 1 shows the generic geometry of a turbofan inlet in an x, r plane of
a cylindrical co-ordinate system. The nacelle interior and exterior shape are typical
of realistic nacelles. The acoustic source is on the plane C, and produces a combi-
nation of radial modes at a specified angular mode m and non-dimensional
frequency #,. The source strength is specified by the complex mode amplitudes.
This type of source would correspond to rotor alone noise or rotor/exit guide vane
interaction noise. The frequency is determined by the number of blades on the rotor
and the angular mode number by the rotor and exit guide vane blade counts. The
nacelle has a forward velocity specified by the Mach number Mg, which is
represented for the stationary nacelle by a steady flow directed toward the nacelle.
The steady flow into the nacelle is specified by the Mach number M, taken to be
uniform on the source plane. The steady flow field inside and outside the nacelle,
computed on the FEM acoustic mesh, provides input data for the FEM acoustic
calculations. This mesh is over refined for the steady flow calculations but this
inefficiency is more than offset by the convenience of input data on a mesh
compatible with the acoustic mesh.

The details of the FEM acoustic computations with the domain closed by
a conventional wave envelope transition region to a Sommerfeld radiation bound-
ary are given in references [35,10-12]. In this example the propagation and
radiation problem is formulated with the standard FEM treatment in the steady
flow near field and the domain is closed in the far field by the use of mapped infinite
wave envelope elements. The specific case shown is at a reduced frequency n, = 25
and angular mode m = 23 with only the first radial mode incident. Only one radial
mode propagates and it has a cutoff ratio near unity, which indicates that the
peak lobe of the radiation pattern will be at a high angle relative to the nacelle axis.
In this case it is over 60° to the nacelle axis for the case of M; = 0-20 and M, = 0-30.
Figure 5 shows the standard mesh in the region which has been abritrarily declared
as the steady flow near field. The steady flow far field is where the flow is essentially
the My = 0-3 uniform flow. The outer boundary of this mesh is the surface C, and 1t
is a circle of constant phase for a source at the axis system origin. The infinite-
element region is outside of C, and not shown. The same inner mesh was used
with the outer region consisting of seven layers of standard wave envelope
elements extending to 10 duct radii ahead of the inlet for the purpose of producing
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Figure 5. The nearfield mesh of standard finite elements bounded by the surface C,.
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Figure 6. Standard wave envelope mesh used in finite element/wave envelope element formulation.
comparison results. The outer mesh for this case is shown in Figure 6. The standard
code has been extensively benchmarked by experiment [12] and by comparison

with available approximate analytical results. Numerical experiments have
shown that for this frequency radiated fields are particularly difficult to model.
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Figure 7. Contours of equal acoustic potential in the entire computational domain for the finite-
element/wave envelope element formulation. External mach number M, = 0-3, source plane Mach
number M; = 0-2, non-dimensional frequency #, = 25, angular mode number m = 23, first radial
mode.

At high angles to the axis the source is certainly not seen as a simple source on C, as
located in this example. It is reasonable to expect that non-reflecting boundary
behavior based on an asymptotic approximation representing a simple source
would be difficult to achieve.

The results which will be displayed are contours of constant acoustic potential
magnitude in an x. r plane superposed on the nacelle geometry. Acoustic potential
has been chosen since there is an extra post-processing step to obtain acoustic
pressure which introduces its own potential for error, unrelated to the details of the
reflection free boundary. Post-processing for pressure in the standard FEM region
involve the same operations whether standard wave envelope or mapped infinite
wave envelope elements are used in the outer solution. Figure 7 shows the radiation
pattern generated by using the standard code (wave envelope elements) and
plotting contours of constant acoustic potential in the entire computational do-
main. Figure 8 shows the same results limited to the region of standard finite
elements, which provides a more detailed way of viewing the reflection free perfor-
mance of the boundary C,. Figure 9 shows the results when mapped infinite wave
envelope elements are used to provide a reflection free boundary. In the case shown
the formulation is based on eight-node Lagrangian interpolation in the mapped
elements in the & direction (eight nodes). This corresponds to introducing R, /R in
the expansion for asymptotic behavior of the farfield solution up to the eighth
power [refer to equation (40)]. Element integration is based on 9 x 3 Gauss points.
It was found that five-node Lagrangian interpolation {powers of R, /R up to five in
the asymptotic expansion} was not sufficient.
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Figure 8. Contours of equal acoustic potential in the standard finite-element region for the
finite-element;wave envelope element formulation. External mach number M, = 0-3, source plane
Mach number M; = 0-2. non-dimensional frequency 7, = 25, angular mode number m = 23, first
radial mode.

Figure 7 displaying the entire solution field to the Sommerfeld boundary (10
duct radii of the nacelle axis) suggests significant reflection from the boundary
which appears in the waviness of the contours, particularly at higher angles where
diffraction around the inlet lip is important and where the nacelle surface interferes
with the radiation. The quality of the solution does not improve with the further
mesh refinement, indicating that the mesh is suitable for the frequency. Figure 3
zooms in on the region inside C, and the poor quality of the solution is apparent. In
Figure 9 the same level contours are considerably less ragged. indicating that
reflection has been essentially eliminated. It is of interest to recall that the computa-
tional domain includes the artificial baffie C, and it appears that it has little effect
on the radiated field, consistent with the results reported in reference [13].

The clear conclusion is that poor quality of the solution when standard wave
envelope elements are used is due to the inability of the wave envelope elements to
provide a completely reflection-free boundary for the complicated source config-
uration and this location of C,. In principle expanding C, should improve the wave
envelope element performance, but this has the obvious implication of directly
increasing the dimensionality (presuming it is required that the mesh refinement 1s
retained) and the hidden implication of requiring even further mesh refinement due
to the growth in element aspect ratio as C, is expanded.

Variable order mapped infinite wave envelope elements generally will increase
the maximum bandwidth of the mesh (the inner mesh may have eight nodes per
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Figure 9. Contours of equal acoustic potential in the standard finite-element region for the
finite-element/mapped infinite wave envelope element formulation. External mach number My = 0-3.
source plane Mach number M; = 0-2, non-dimensional frequency #, = 25, angular mode number
m = 23, first radial mode. The order of the interpolation in the infinite elements is eighth power in
Ri/R.

element and the single infinite element layer has been tested here with as many as 24
nodes per element). In frontal solvers, this tends to slow down the solution even if
the total number of nodes is more or less the same in the mapped elements as in the
standard wave envelope elements. In the example discussed. a frontal solver is used
and the mapped infinite-element computation have an execution time which is in
a ratio of about 7/5 compared to the standard wave envelope code. This cost is not
unimportant, but must be assessed against the requirements for solution quality. In
this case, the infinite-element results are clearly superior.

The question now arises; how much can the computational domain be reduced
by using the infinite elements to enhance the reflection-free boundary? To partly
address the question, the boundary C, has been reduced to a radius of two duct
radii ahead of the origin. Note in the original mesh of Figure 5 the mesh extends 2-5
duct radii ahead of the origin. In order to maintain approximately the same
mesh refinement, the element count between the “highlight circle”™ (a circle
passing through the tip of the inlet lip and intersecting the axis near r = 1) has
been reduced from 50 to 35. Figure 10 shows acoustic potential level curves in
the standard element region for the case using mapped wave envelope elements
for closure. The quality of the solution is still substantially superior to that seen in
Figure 8 for which closure was achieved using regular wave envelope elements
(note that the level curves are not the same in Figures 8 and 10 because they are
based on the maximum level on C,, which differs because C, differs). The
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Figure 10. Contours of equal acoustic potential in the standard finite-clement region for the
finite-element/mapped infinite wave envelope element formulation on a reduced mesh in the standard
element region. External mach number M, = 0-3, source plane Mach number M, = 0-2, non-dimen-
sional frequency 5, = 25, angular mode number m = 23, first radial mode. The order of the interpola-
tion in the infinite elements is eighth power in R;/R.

computation time ratio is now nearly 1/1 and the mapped infinite-element results
are still superior.

11. CONCLUSION

It has been shown that with suitable modifications mapped infinite wave envel-
ope elements can be used to provide an effective reflection-free boundary for
acoustic radiation in a uniform steady flow. The adaptation of the elements to this
case is based on the observation that all important “distances” along “rays” map to
the parent element in the infinite mapping in exactly the same way. This permits the
fundamental solution for radiation from a source in uniform flow to be mapped to
the parent element in a form similar to the mapping in the case of a stationary
medium. The fundamental solution forms the basis for an asymptotic expansion in
R~"in the infinite elements, where R is the “convected radius”, R? = x* + *r?.
The order of the asymptotic expansion can be chosen to meet the needs of the
problem. Element mapping functions are identical to those previously proposed for
the stationary medium case and the shape functions are of the same form as those in
the stationary medium case with differences only in the details.

Computational examples have been based on acoustic radiation from a turbofan
inlet which has been the subject of several previous investigations in which an FEM
model was developed with the reflection-free closure of the computational domain
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based on standard wave envelope elements. Examples have shown that mapped
infinite wave envelope elements provide a superior reflection-free boundary for
cases in which the standard wave envelope elements generate reflections which
appear in the radiated field. It should be noted that the improved performance may
not be without cost. If relatively high order mapped elements (asymptotic behavior
to R™" where n is relatively large) are required, the maximum front width of the
FEM formulation may be larger than would occur in the standard wave envelope
element formulation. For frontal solvers this may decrease computational efficien-
cy. However, this cost has a substantial benefit in the quality of the solution which
may not be achievable with the standard wave envelope elemnts without expanding
the boundary between standard FEM and the wave envelope element region. In
fact, it has been shown that by taking advantage of the reduction in size of the inner
region (standard element region) which is achievable with mapped infinite elements
it is possible to obtain superior solutions without increasing computation time.

It has been found that the mapped infinite wave envelope element region can be
cast in the form of appended mass, damping and stiffness matrices. With a suitable
choice of the surface which separates the standard FEM region from the infinite-
element region and the restriction that the mapping and shape functions in the
infinite elements are based on a common apparent source location, it has been
shown that the element mass matrices vanishe. This has previously been shown to
be important for transient FEM formulations for radiation in a stationary medium.
This suggests that similar investigations should be carried out in the case of
uniform external flow.
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A REFLECTION FREE BOUNDARY CONDITION FOR
PROPAGATION IN UNIFORM FLOW USING
MAPPED INFINITE WAVE ENVELOPE ELEMENTS

Walter Eversman
University of Missouri-Rolla, Rolla, MO, 65401, USA

ABSTRACT
Variable order mapped infinite wave envelope elements are developed for finite element

modeling of acoustic radiation in a uniformly moving medium. These elements are used as a non-
reflecting boundary condition for computations on an infinite domain in which a radiating body
is immersed in a moving medium which is essentially undisturbed outside of the near field. The
mapped elements provide a boundary condition equivalent to element stiffness, mass, and damping
matrices appended to an inner standard FEM mesh. A demonstration of the performance of
mapped elements as influenced by element order is given in the context of acoustic radiation from
a turbofan inlet and exhaust.

INTRODUCTION

FEM modeling of acoustic radiation is usually complicated by the requirement that
prediction of the acoustic field is sought in some finite sub-domain of an infinite domain. This
dictates that computations be limited to the sub-domain with a non-reflecting boundary or that
the infinite domain be mapped to a finite computational domain. The investigation reported here
seeks an improved non-reflecting boundary condition for aeroacoustics problems in which
acoustic radiation in the far field is influenced by steady uniform flow. In order to maintain
compatibility with standard FEM solution procedures (for example frontal solvers or other sparse
matrix/narrow bandwidth methods), only local types of boundary conditions are considered. In
this context boundary conditions which can be categorized as various evolutions of “infinite
element” methods [1-5] or “wave envelope element” methods [6,7] have been studied. Mapped
infinite wave envelope elements [4,5], which combine the attributes of “infinite” and “wave
envelope” elements, have been chosen in this investigation because of their almost seamless
compatibility with active FEM codes and meshes. Mapped infinite wave envelope elements limit
computations to a finite domain and provide an approximate reflection free boundary. They have
been investigated extensively for acoustic radiation in a stationary medium [4,5]. Formulation of
the elements reveals the possibility of including within the element shape function an explicit, and



adjustable, dependence on inverse powers of the distance from an apparent acoustic source. This
allows the introduction of mapped infinite wave envelope elements well into what would normally
be considered the acoustic near field, reducing mesh refinement and dimensionality.

The study reported here extends the variable order mapped infinite wave envelope element
concept, as implemented by Astley and co-workers [4,5], to steady uniform flows, principally in
connection with aeroacoustic problems related to turbofan acoustic radiation. Most previously
reported applications of infinite elements were implemented in two or three dimensions. The
application here is in a cylindrical coordinate system reduced to two dimensions by taking
advantage of periodicity of the solution in the angular coordinate. References [3-5], and a recent
contribution by Astley and Hamilton [8], provide excellent citations to the development of the
infinite element concept, leading to the present application.

AN APPLICATION TO TURBOFAN ACOUSTICS

An important problem of acoustic radiation in a moving medium is available in the study
of the acoustic field of a turbofan inlet and exhaust. Acoustic propagation and radiation occurs
in a high speed potential flow which is the net effect of flow into (out of) the inlet (exhaust) and
the forward flight of the nacelle. In the steady flow far field acoustic radiation occurs in a
uniformly moving medium. It is required to make computations to predict the radiated field
relatively near the inlet (6] (exhaust [7]). This has been approached in the past by terminating the
computational domain with a Sommerfeld condition on a boundary reached by the use of wave
envelope elements. Here it is intended to investigate the application of mapped infinite wave
envelope elements to obtain closure of the computational domain.

The problem is cast here in terms of the turbofan inlet, but an exhaust flow can be modeled
with modifications particular to the shear layer boundary between the exhaust jet and the
surrounding medium [7]. The geometry of the nacelle and steady flow field in and around it is
axially symmetric. The acoustic field is not axially symmetric but is represented as periodic in a
cylindrical coordinate system with x being the axis of symmetry, 7 the cylindrical radius in a
circular cross sectionat x = 0, and 6 the angular coordinate. Solutions are sought in angular
harmonics of a Fourier Series enumerated by the angular mode number m . This reduces the
solution domain to a two dimensional x, » plane, shown in Figure 1. The inlet shape in a
8 = constant plane is defined by the surface C, which includes the center body. The surface C,
is the plane on which a source is defined, for example the plane of the fan. The surface C, isan
artificial baffle introduced to limit the computational domain. The boundary C_ is the outer
boundary of the computational domain.which in principle is infinitely far away, but may be a finite
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surface where a radiation condition is introduced.

The acoustic field is assumed to be harmonic in time at non-dimensional frequency 7, .
Geometry is non-dimensional based on a reference length generally chosen as the radius of the
inlet at the source plane, R. Acoustic and steady flow variables are non-dimensional based on
reference values of the speed of sound and density of the medium, p_ , c_, generally defined in
the uniform exterior flow. The non-dimensional frequencyis 1. = w R/ c_, with wthe harmonic
source frequency.

In terms of acoustic potential the weak formulation is [3]

[[[ 2ot vw-90 - (T, 9w, 96) + in, (F(M,99) - (V- TH)9] - ' d )V
12 Cr

] Hp_;{cfwvcp - MWV -V$) - in M, W} -AdS (1)
c

where the local non-dimensional steady flow velocity is A;[r = V¢, and the local non-dimensional
density and speed of sound are p_, c,. The surface integral on the right hand side introduces the
. noise source on C in Figure 1 and a possﬂ)le impedance boundary condition on C, inside the
inlet. Equation (1) is the weak formulation in the entire domain, however in the steady flow far
field it simplifies considerably with the steady flow given by A/;fr =M,i and p, =1, ¢ =1

The weak formulation in the steady flow far field where the flow field is uniform at Mach number M

18

ff[{VWw: My ZE% i 8- gy -miweyav

(2)
” WV - (MZEQ - in, M, )7} -AdS

Equation (2) is obtained from equation (1) by noting that A;[r is constant and directed along the
x axis. The surface integral on the right is only on the outer boundary C_ and provides the
possibility of introducing the Sommerfeld condition, if required.

In the steady flow near field, where the flow is non-uniform, equation (1) is discretized
using standard finite element techniques. Example calculations presented in this study are based

(9%)



on two-dimensional rectangular isoparametric serendipity elements with eight nodes. In the steady
flow far field where the flow is essentially uniform, equation (2) is discretized by introducing
mapped infinite wave envelope elements to obtain closure of the computational domain.

THE INFINITE MAPPING

Only a brief summary of the infinite mapping is given here, as it is given in detail elsewhere
[4]. Equation (1) is discretized using standard FEM techniques in a near field region bounded by
the curve C, shown in Figure 1. In a far field region, bounded by C, and C_, a notional
boundary at infinity, equation (2) is discretized using mapped infinite wave envelope elements.
These elements conform with standard elements in the inner standard FEM regionon C, . Figure
2 shows an infinite element in the outer region. The edges of the element are straight lines,
extending outward more or less radially, though not necessarily from the axis system origin nor
necessarily from a common origin. For the elements used in this investigation a third radial line
between the two edges is required. A “ray” of an element has an apparent origin at a point
X, , , whichin general can be dlﬂ"erent for each ray. The element maps to a parent element in the

£, mplane, -1 <£<1,-1<n<1 asshowninFigure?2. The rays of the element map-to
the £ axiswith 1 = -1, 0, 1 in the parent element according to
2 - 2 -
X -Xxy= -—————(xl %o , r-ry = —-———(rl o) 3)
1-¢ 1 -§

It is easily deduced that this mapping along a “ray” also applies for the polar radius of the point

) B 3 5 .
x , r relativeto x,, 7, rp—ﬂx—xo) +(r - ry)* , in the same form

2o xR 2 @
p 1-§ 1 -¢

This form emphasizes the role of the base node X, , r, as a “source” for the “ray” and the
distance 7, as the polar distance from the source. The infinite element mapping is completed by
a convennonal mapping on -1 < 1 < 1. [tis also noted that the results of equation (4) can be
extended to other “distances* along a ray yielding a similar mapping. For example

2R

R = (Jc—Jco)2+[32(r—r02=—-——1_1E (5)

where R, = \ﬂxl Sx 2+ PAr, -y and  BP=1- M? and M is the Mach number
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of the uniformly flowing medium. A second useful mapping is
1 A
Y= E[‘A’[(X -x) + R] = TTIE (6)

where Y, = B2{-M(x, - x,) + R]. These observations are important to the extension of the
application of the mapped infinite wave envelope element to acoustic radiation in uniform steady

flow.
The weak formulation of equation (2) for acoustic radiation in a uniformly moving medium

is consistent with the differential equation
(L mlye -7 (7
ot ox

Equation (7) has a fundamental harmonic source solution at non-dimensional frequency m_, for

source location at x, , 7, , given by
Sy

_ inr €
$=e —— (8)

where ( and R are defined by equations (5) and (6). Equation (8) can be deduced by
transformation of equation (7) by noting that the transformation of variables

M

x’=§—,r’=r, t'=Zx+ Bt (%)
B
reduces the convected wave equation to the standard wave equation
ja¥]
0oy (10)
ar’?

Equation (10) in the transformed variables has a fundamental harmonic source solution at

frequency 7', =m,/B whichis

n, -4%’-\/1:”«-)'/2

i—t

p=el Z—o (11)

Equation (8) is then obtained (within a constant) by replacing the change of variables of equation

(9) and accounting for the source location at x; , ¥, , Z,-
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SHAPE FUNCTIONS IN THE INFINITE ELEMENTS
Shape functions in the mapped elements can be constructed to display the characteristics
of the fundamental source solution at large distances from the source in the form

e =in, (Y(2) - ¥))

b = 0(f)e ™ R, 6

= P(£)e "m0 ¢ in(D (12)
where the notation = (x, 7) and p(¥) =1, (V(X) - ¥,) isused. p(x) is the phase relative
to the surface C, separating the infinite element region from the standard FEM and {,
emphasizes that this phase is dependent on the specific “ray” on which equation (12) is evaluated.
i, would be a constant for the entire infinite element region if C. is a surface of constant ¥ (a
“constant phase surface”). The most direct way to make 1, invariant for the mesh is to construct
the mesh so that for all infinite elements x, , r, (the “source point”) is common and C, isa
surface of constant | (“phase”) relative to the common “source”. The mesh used by Danda Roy
and Eversman [6] has this property (x, , r, are at the mesh origin) and is used in examples in
this investigation. At large R equation (12) should have asymptotic behavior in R consistent
with equation (8). The function P(¥) should therefore display the appropriate asymptotic
behavior in R , should be capable of accounting for near field effects, and should interpolate in
the standard FEM context in the 7 coordinate in the parent element.

In terms of the & , 1 coordinates of the parent element u(¥) and R(X)/R, have
simple forms suggested by equations (5) and (6):

1 +¢&

uE,n) = WIT—_—E (13)
R 1

=241 - 14
RE T 2(1 £) (14)

In equation (12) in the most general case i, canbea function of 7 on the inner boundary of
the element £ = -1, interpolated relative to nodal values on C, .

The shape function P,(§, n) corresponding to node i is constructed from the p th order
Lagrangian shape function L7 (&, n) , according to



PE,m)=NE,n==(1-8L7(E,n) (15)

1
2
Some liberty is taken with notation here; L7 (§, n)is defined so that p is the order of
interpolation (number of nodes) along the £ axis. Along the m axis the order conforms with the
order used in the standard FEM region, which is 3 in the two dimensional serendipity elements
implemented in the model reported here.

The form of the shape functions defined by equation (15) can be interpreted in global
coordinates by using equation (15) to suggest that the shape functions in global coordinates along

aray are Ofthe fOI'l'n
j (x:‘) ! ( 1) ! ( l)2 [ ( 1)3 """ Y ( l)n (16)
! ! R z R 3 R g

1 is determined from the order of Lagrangian interpolation. For a p node interpolation leading
to polynomials in & of degree p - 11itis determined that 7 = p. A similar result was shown
in the case of radiation in a stationary medium [4]. The mapped elements are variable order

because » can be chosen for the application.

WEIGHT FUNCTIONS IN THE INFINITE ELEMENTS

In order for the boundary integral introduced in the weak formulation to have no
contribution on'the boundary at infinity it is necessary for the weighting functions to be functions
of {R,/R(x)} a7l with ¢ > 1 [4]. The weight functions are of the form

g+l
W = Q(f)eimﬁ (__R_l_] ein,(W(f)-%) - D(f)P(f)e,me eip.(i) (17)
R(%)
where
R q
D =| — 18
NN 8)
In the parent element
D(&,n>=(§)q<1-s>q (19)
7



The weight functions are the complex conjugates of the shape functions multiplied by the
additional decay term.

THE WEAK FORMULATION IN THE INFINITE ELEMENT REGION

The weak formulation of equation (2) for the infinite element region in which the steady
flow is necessarily uniform is obtained by using equations (12) and (17) defining the assumed form
of solution and the weight functions in the infinite element region. The gradient operations on the
assumed shape and weighting functions yield

Ve = (VP -in PVp)e ™" (20)
and
VW = (DVP" +in, DPVu + PVD)e™" (21)

The superscript (*) denotes the complex conjugate of the operation
VP =P, [+ Pe -i np &, whichis defined explicitly for the cylindrical coordinate system and
takes into account the angular harmonics depending on m . By using standard finite element
operations equation (2) can be formulated to yield complex element “stiffness” matrices [[ZU}

defined in terms of real mass, stiffness and damping matrices
[AREHTAREACARES @
where

gP gP. OP &P 2
K. = DIl -MH—i i 225 . " pp
! fif{ = )ax éx or dr  r? 4]

aP aP
Dy D Ciyay

?P,[(I —Mz) -
cx ox gr or

(23)
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TN TRe R:/ L8 B i
M, ”fDPP{l M)(ax) (ar) 2Max]}dV (24)

oud, 3P gy P

Con [JJ PP M G 5 M "5 5

P, P apP
- D1 -MHE u ° (S T gp
ax ox & dr or

25
SD 3, 49D . D Wyp pyay 2

- - M?
[ )ax dx dx or or” '/

The definitions of the stiffness, mass, and damping matrices of equations (23)-(25) are
implemented at the element level using the infinite mapping to the parent element. These results
reduce to those of reference [4] when the medium is stationary and when account is taken of the
operations which are particular to the cylindrical coordinate system.

The mass matrix of equation (24) vanishes if the surface C, separating the standard finite
element region from the infinite element region is a surface of constant phase for an apparent
acoustic source location x, , 7, which is common for all elements. This is shown by referring to
the definition of p(x),

n(®) =7, (W) - %) (26)
where

¥O - L [-M(x - x) * R] @7
and

R=\J(x - x) + B (r - rp)? (28)

Since it is stipulated that C_ is a constant phase surface, it follows that 1, is constant. The
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apparent source location is the same for all elements, leading to the conclusion that x; , 7, are
constants. It can then be verified that

(1-my (g e By op B (29)
ox or ox

which from equation (24) leads to the result M,j. = 0 . This is consistent with the findings of
Astley, Macaulay, Coyette, and Cremers [1] in the case of a stationary medium when the surface
C_ is a sphere, a constant phase surface in this case. While of some interest in the time harmonic
formulation considered here, the vanishing of the mass matrix is of central importance when a
time dependent formulation is implemented in the stationary medium case [2]. It remains to be
established that this is equally important in the case of a uniformly moving medium. It should be
noted that the result M = 0 assumes that FEM interpolations and integrations are exact. There
is in fact approxu'natlon error which is small as verified in calculations reported here. However in
transient calculations this should be considered [3].

TURBOFAN NACELLE EXAMPLES

Computational examples will be given to demonstrate the performance of mapped infinite
. wave envelope elements as compared to standard wave envelope elements and in particular the
performance of the new elements as a function of the expansion order will be examined. The
codes which uses standard wave envelope elements [6,7] have a substantial history of
benchmarking against experiment and simple test cases and can comfortably be used as a basis for
evaluating the mapped elements

Figure 1 shows the generic geometry of a turbofan inlet inan x, r plane of a cylindrical
coordinate system. The acoustic source is on the plane C, and produces a combination of radial
modes at a specified angular mode m and non-dimensional frequency m, . The source strength
is specified by complex modal amplitudes [6]. The nacelle has a forward velocity specified by the
Mach number M, , which is represented for the stationary nacelle by a steady flow directed
toward the nacelle. The steady flow into the nacelle is specified by the Mach number M, , taken
to be uniform on the source plane. The steady flow field inside and outside the nacelle computed
on the FEM acoustic mesh provides data for the FEM acoustic calculations. Figure 1 indicates
that the computational domain is limited by an artificial baffle C, . Acoustic radiation is highly
directional and it has been shown that the baffle can be oriented to have only minimal influence
on the radiated field. This baffle is introduced to limit the dimensionality of the FEM

discretization.

10
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The details of the FEM acoustic computations with the domain closed by a conventional
wave envelope transition region to a Sommerfeld radiation boundary are given in [6]. In a first
example given here the propagation and radiation problem is formulated with a standard FEM
discretization in the steady non-uniform flow near field and the domain s completed in the far field
by the use of standard wave envelope elements. The specific case shown is at a reduced frequency
n, = 25 and angular mode m = 23 with only the first radial mode incident. Only one radial mode
propagates and it has a cutoff ratio near unity, which suggests that the peak lobe of the radiation
pattern will be at a high angle relative to the nacelle axis. Steady flow is defined by M, = 0.3 and
M., = 0.2. This case could correspond to rotor noise for a mildly supersonic tip speed rotor with
23 blades. The conventional FEM mesh for this example is shown in Figure 3 (as used in the
infinite element implementation). Infinite elements provide the reflection free boundary condition
on the outer boundary. The domain limiting baffle is swept back more than 130 degrees from the
duct axis. The mesh refinement is at close to the limit for the non-dimensional frequency
considered. The proximity of the boundary C_ to the nacelle is limited by the extent of the non-
uniform flow field generated by flow around the nacelle.

The results which are displayed are contours of constant acoustic potential magnitude in
an x, r plane superposed on the nacelle geometry. Figure 4, for wave envelope closure of the
computational domain, shows the radiation pattern in terms of contours of constant acoustic
potential magnitude in the acoustic near field, that is, in the standard FEM region. Acoustic
contours show a single lobe of radiation with the highest level on the transition surface C,
corresponding to the closed contour. Considerable evidence of reflection from the wave envelope
element region is revealed by the wavy quality of the iso-potential contours. In this case the
transition surface C, (a constant phase surface) intersects the x axisat 2.5 duct radii.. This
distance is apparently insufficient to achieve a good non-reflecting boundary using the wave
envelope elements, which in this case consists of seven layers of elements extending to 10 duct
radii on the x axis where the Sommerfeld condition is imposed. Mesh refinement has virtually
no effect on the quality of the solution. The case depicted with radiation to the sideline is difficult
because of the geometrical complexity of the source.

Figure 5, 6, and 7 show similar results when mapped infinite wave envelope elements of
order 8, 9, and 10 (the asymptotic expansion in powers of R /R up to 8, 9, 10) are used to
provide a reflection free boundary. In this case the transition boundary C, intersects the x axis
at 2.0 duct radii, closer to the nacelle than for the results of Figure 4. The mesh refinement is
approximately the same as used in Figure 4, and the element count is lower. There is
progressively less evidence of reflection (waviness of the contours) as the element order 18
increased in successive figures. There is only a modest improvement between the order 9

11
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expansion of Figure 6 and the order 10 expansion of Figure 7. The baffle limiting the
computational domain, as noted in Figure 1, accounts for most of the residual evidence of
reflection. Note that the iso-acoustic pressure contours of Figure 4 do not distribute in exactly the
same way as those in Figures 5, 6, and 7 (they normalize on a different boundary). The result is
that there are contours closer to the baffle in the latter cases, and these seem to show a small
effect of the baffle. Timing in all of the cases shown is very nearly equivalent.

The infinite element mapping and shape functions have also been used to generate the
solution in the far field, and this is shown in Figure 8 where acoustic pressure contours are
displayed. Acoustic pressure is obtained by post-processing acoustic potential [6.7] and is less
accurate for a given mesh resolution because post-processing requires the spatial derivative of
potential. In general, it is found that the solution for either potential or pressure is better in the
infinite element region than in the conventional FEM region. This is because the infinite elements
have shape functions which include the spatially harmonic character of the solution. The effect of
reflection from the baffle is clearly shown, however the principal lobe of radiation is essentially
unaffected by the baffle.

As a final example to demonstrate the robustness of the reflection free boundary conditron
acoustic radiation from a turbofan exhaust is considered. Figure 9 shows the geometry with a
potential flow jet issuing from the nacelle to represent exhaust flow. The mesh used in this
implementation is shown in Figure 10. Note that there is a region of triangular elements that is
used to work around the sharp trailing edge of the duct without unacceptable element distortion.
This has been found to be the most convenient mesh strategy consistent with the goal of keeping
a simple, but optimal node numbering scheme for the frontal solver which is used.

The FEM formulation in the interior region is somewhat more complicated than in the
inlet case, requiring continuity of acoustic pressure and particle displacement across the shear
layer separating the jet from the exterior flow [7]. The length of the jet region forces the inner
region in which standard FEM methods are used to be of much larger extent than in the inlet case.
The case considered here is at non-dimensional frequency T, = 25, with angular mode
m =23, n = 1 incident. The jet Mach numberis M = 0.5 and the exterior flow Mach number
is M, =0.2 . The standard FEM region ends at 3.75 duct radii from the origin (on the axis of
symmetry). The jet shear layer ends at 1.0 duct radii from the axis origin, which corresponds with
the tip of the center body. However, potential flow mixing persists for some considerable distance
beyond this point. Figure 11 shows contours of constant acoustic potential in the near field
generated with standard wave envelope elements providing the reflection free boundary
condition. Figure 12 shows similar contours generated with the domain closed using tenth order
mapped infinite wave envelope elements. The improvement with the mapped infinite elements is

12
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substantial
Some interesting properties of the solution are revealed in Figures 11 and 12. In the

interior of the duct evidence is seen of standing waves along the duct wall. This is due to
reflection at the duct termination. Discontinuity of acoustic potential (required by the physics of
the problem), though not great, is seen across the shear layer between the jet and the surrounding
flow. This is difficult to see due to the size of the figures, but it can be observed most clearly near
the duct lip. The contours shown cover a range of 40 dB. There is a substantial improvement ol
the quality of the contours generated with the mapped elements. This is in spite of the fact that
the mesh density used is marginal for the non-dimensional frequency considered and the fact that
with the extended jet the boundary of the conventional FEM region is very close to the “extended”
body. Figure 13 shows the post-processed acoustic pressure solution in both the near and far field.
The effect of the baffle is noted to not substantially alter the principal lobe of radiation.

CONCLUSION

With suitable modifications mapped infinite wave envelope elements can be used to
provide an effective reflection free boundary for acoustic radiation in a uniform steady flow. The
fundamental solution for a source in uniform flow forms the basis for an asymptotic expansion in
R -9 in the infinite elements, where R is the “convected radius”, R? = x? + B?r* . The order
of the asymptotic expansion can be chosen to meet the needs of the problem. Element mapping
functions are identical to those previously proposed for the stationary medium case and the shape
functions are of the same form as those in the stationary medium case with differences only in the
details. Examples show that mapped infinite wave envelope elements provide a superior
reflection free boundary for cases in which standard wave envelope elements generate reflections
which appear in the radiated field. It has been demonstrated in the nacelle inlet case that this
improved reflection free performance can be achieved on a reduced mesh.
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A NUMERICAL COMPARISON
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Abstract

An explicit, analytical, multiple-scales so-
lution for modal sound transmission through
slowly varying ducts with mean flow and acous-
tic lining, is tested against a numerically “ex-
act” finite element solution. The test geometry
taken is representative of a high-bypass turbo
fan aircraft engine, with typical Mach numbers
of 0.5-0.7, circumferential mode numbers m of
10-40, dimensionless wave numbers of 10-50,
and both hard and acoustically treated inlet
walls of impedance Z = 2 —i. Of special inter-
est is the presence of the spinner, which incor-
porates a geometrical complexity which could
previously only be handled by fully numerical
solutions. The results in predicted power atten-
uation loss show in general a very good agree-
ment. The results in iso-pressure contour plots
show good comparison in the cases where scat-
tering into many higher radial modes can occur
easily (high frequency, low angular mode), and
again a very good agreement in the other cases.

Introduction

The calculational complexities of the multi-
ple-scales solution for modal sound transmis-
sion through slowly varying ducts with mean
flow and acoustic lining (presented in [1]), are
no more than for the classical modal solution
for a straight duct. The multiple-scales so-
lution is an approximation utilizing the axial
slope of the duct walls as small parameter. This
slope is for aerodynamical reasons indeed in-
variably small in any aero-engine duct.

Therefore, this multiple-scales solution pro-
vides an interesting alternative in aero-engine
applications, as it both allows for the advan-

tages of the analytical approach (speed of calcu-
lation and relative simplicity of programming),
and variable geometries including spinner and
mean flow variation.

The final approximation error in realistic
geometries, however, is difficult to determine,
except for an order of magnitude estimate say-
ing that it scales on this slope. It is therefore
of interest to directly compare the analytical
approximation with a state of the art fully nu-
merical solution of the same physical model.
This is the subject of the present paper.

As a first step towards exploring the possi-
bilities, a series of tests are carried out, com-
paring the analytical results with results of the
finite element solution, given in [2], of a com-
pressible inviscid isentropic irrotational mean
flow, superimposed by linear acoustic pertur-
bations.

Physical model

We consider a circular symmetrical duct
with a compressible inviscid perfect isentropic
irrotational gas flow, consisting of a mean flow
and acoustic perturbations. To the mean flow
the duct is hard-walled, but for the acoustic
field the duct is lined with an impedance wall.
In view of the adopted aero-engine geometry,
the inner wall (corresponding to the spinner)
will be hardwalled, without lining.

We make dimensionless: spatial dimensions
on a typical duct radius Rec, densities on a ref-
erence value pe,, velocities on a reference sound
speed Coo, time on Roo/Coo, pressure on ProCoos
and velocity potential on Rogcoe. Note that
the corresponding reference pressure po satis-
fies pooc>, = YPoo, where v = 1.4 is the (con-
stant) ratio of specific heats at constant pres-
sure and volume.

Copyright (c} 1999 by S.W. Rienstra. Published by the American Institute of Aeronautics and Astronautics, Inc., with permmission
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The Auid in the duct is described by

Bo+ V- (5V) =0, (1a)
(Ve +¥-V) + V5 =0, (1b)

. dp
57, é‘:d—lf_—_ﬁ"_l (lc,d)
p

(with boundary and initial conditions), where
v is particle velocity, p is density, p is pressure,
# is sound speed (all dimensionless).

Since we assumed the flow to be irrotation-
al, we may introduce a velocity potential o,
such that v = V¢, and the above momen-
tum equation may be integrated to a variant
of Bernoulli’s equation

This flow is split up into a stationary mean
flow part, and an acoustic perturbation. This
acoustic part varies harmonically in time with
circular frequency w, and with small amplitude
to allow linearization.

In the usual complex notation we write then

v=V +ve_i“’t, d; — (I)+ éefwt’
p=D+pet, p=P+pe,
&= C +ce’.

Substitution and linearization yields:

e mean flow field

V-(DV) =0, (3a)
GV = E (3b)
C*=yP/D=D""Y (3c)

o acoustic field
wp+ V- (DVe +pV) =0, (4a)
iw¢+V-V¢‘>+%:O, (4b)
p=C?. (4c)

where E is a constant, and the acoustic pertur-
bation of ¢ is further ignored. The integration
constant in equation (4b) may be absorbed by
#. For the mean flow the duct wall is solid, so
the normal velocity vanishes at the wall. The
subsonic mean flow is determined by conditions
of uniformity upstream, the constant £, and an
axtal mass flux 7 F.

For the acoustic part the outer duct wall is
a locally reacting impedance wall with complex
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impedance Z. The pertaining boundary condi-
tion is for a point near the wall but still (just)
inside the mean flow. For arbitrary mean flow
along a (smoothly) curved wall, with normal n
directed into the wall, this was given by Myers
(3], eq. 15, as

iw(ven) = [iwv-v—n-(n-VV)]( ). )

NS

Geometry

The reference values taken for non-dimen-
sionalization are at the source plane r = 0,
including the outer radius for length scale.

The outer radius R and inner radius R;
are described by the following formulas

Ra(z) = 1 —0.184532"
—11{1=z") _ g—1l

+0.10158 -

. (6)

1 —e- 11
Ri(z) = max[0,0.64212
—(0.04777 + 0.98234z'2)"3], (7)

where ¢’ = z/L and L = 1.86393 is the length
of the duct; see figure (1)

—

source plane

o
)
T

Figure 1. Geometry

The mean flow is selected such that at the
source plane r = 0 the Mach number is equal
to —0.5, and the dimensionless density equal to
1. The corresponding axial Mach number and
dimensionless density variation (based on the
quasi-one dimensional mean flow solution; see

below) is depicted in figure (2).
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Figure 2: Mach number and density

Multiple scales solution

For the success of the analytical solution it
is essential that the mean flow and the acoustic
field are approximated on the same footing. An
arbitrary, ad-hoc, mean flow field would not
allow the present explicit solution. So the mean
flow used for the multiple scales solution is not
exactly the same as the one used for the finite
element solution. They are, however, in terms
of approximation of the same level. Therefore,
we give here the mean flow and the acoustic
field together.

The approximation is based on the assump-
tion that geometry and mean flow vary slowly,
i.e. on a length scale much larger than a typ-
ical duct diameter or wave length. This is, of
course, for aerodynamical reasons the case in-
side an aero-engine inlet duct. We introduce
the ratio between a typical diameter and this
length scale as the small parameter ¢, and re-
write the duct surface (in radial coordinates
(z.7,6))

r=Ri(X), r=Ry(X), X=¢czx (8)

By rewriting R; » as a function of slow variable
X, rather than z, we have made our formal
assumption of slow variation explicit in a con-
venient and simple way. Although in the final
result ¢ will play no explicit role, a represen-
tative value of ¢ will be necessary for an order
of magnitude estimate of the approximation er-
ror.

By assuming that the mean flow is nearly
uniform with axial variations in .X only, we find
that small axial mass variations can only be
balanced by a small radial flow, so

V o~ Up(X)es + Vi (X, 7)er

American Institute of Aeronautics and Astronautics

and similarly are P ~ Py(X), D =~ Do(X), and
C ~ Co(X) to leading order only dependent on
X. It follows that

_ F

T Do(X)(R3(X) — R{(X))

with Vi, Do, Py and Cy are given by the well
known one dimensional gas flow equations {see
e.g. [1]).

The acoustic field is assumed to be described
by mode-like solutions of the form

Us(X)

. S ¢
o(r,r8;¢) = A(X, ri¢) emimd—ie ™! [Tu(e)de

(9)
After expanding A = Ag+eA;+0(¢?) and p =
po+O(e?) (any possible y; can be absorbed by
A1), and substitution in equations and bound-
ary conditions, we find for Ap a Bessel-type
equation in r, so we obtain the slowly varying
mode

Ap = N(X)Im(a(X)r) + M(X)Yn(a(X)r)
(10)
where J,, and Y, are the m-th order Bessel
function of the first and second kind. Radial
eigenvalue a and M/N are determined by the .
boundary condition, while

o+ =02/C3, Q=w-—pls.

The crux of the solution is the determination
of amplitude ¥ (.X), as a function of X. This
is determined by the next order equation for
Ay. It is, however, not necessary to solve this
complicated equation. A solvability condition
(1] is enough to generate a differential equation
in X for N, which can be solved exactly. The
general solution for the hollow cylinder (Ry =
0, M = 0) is given by

()= (%50

where Qo is an integration constant, and

Co = Q2DgRa/iwZs, 0% = 1~ (C§ —UZ)a? /W
The solution for the annular cylinder is more
complicated, although explicit, and can be
found in {1}

Finite element solution

A numerical model for sound propagation
is based on a finite element discretization of
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the steady flow field equations (3a-3c) and the
acoustic field equations (4a-4c). The weak for-
mulation of equation (3a) for the steady com-
pressible flow in the duct is in terms of the
steady flow velocity potential ® and steady flow
density D,

/V//VW'(DVcb)dv = [/ W(DV®)-ndS.

(12)
“'q;_\/______
8
12 l
r § ! 2
3 duct ’g-
3

inlet plane

o
w
T T T T T Y

'/

spinner

L s L 1 L L L
X —— 1 2

o

Figure 3: Computational domain FEM

Weighting functions W are from the class
of continuous functions on the volume V' of the
duct bounded by the duct surface S, which
includes the duct walls and source and exit
planes. A solution for @ is sought in the class
of continuous functions. The unit normal is
directed out of the duct. The duct geometry
and the steady flow field are axially symmetric
favoring the introduction of a cylindrical coor-
dinate system with z axis coincident with the
axis of symmetry, r axis in the source plane
at z = 0, and the angular coordinate 8 locat-
ing the r axis in the z = 0 plane (see figure
3 for the computational domain). The steady
flow field is represented in an (z,r)-plane, and
is two-dimensional. A standard finite element
formulation of equation (12) is based on eight
node isoparametric serendipity elements.

Equations (3b) and (3c) are subsidiary re-
lations that are used in an iterative solution
in which at each stage the finite element dis-
cretization of equation (12) is solved with a
density and speed of sound field derived from
the previous iteration step. The boundary in-
tegral on the right hand side, which is a natu-
ral boundary condition, specifies the mass flow
rate on the source plane. A forced boundary
condition setting the level of the potential is
required on the exit plane (figure 3). It is as-
sumed that the source plane and exit plane are
located remotely enough from regions of non-
uniformity in the duct so that at the source and
exit planes the flow velocity is uniform, per-
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mitting the natural and forced boundary con-
ditions to be easily implemented. In practical
calculations in the type of duct considered this
turns out not to be restrictive.

The mean flow in the duct given by figure
3, with a uniform Mach number at the source
plane M = —0.5, is directed from right to left
(an inlet flow). The duct shape defined by
equations (6) and (7) begins at the source plane
z = 0 and is extended beyond the nominal ter-
mination used in the analytical development in
a uniform duct to allow the flow field to become
uniform at the exit plane. No extension is used
at the source end and the extension at the exit
end is probably longer than necessary. V®, C,
D are required data for the FEM solution for
acoustic propagation.

A finite element model for acoustic propa-
gation is based on a weak formulation of equa-
tions (4a-4c). Acoustic perturbations in pres-
sure, density and velocity potential are har-
monic in time with frequency w and harmonic
in the angular coordinate 8 of the form p(z,r),
p(z,r), and ¢(x, r) times the complex exponent
eiwt=1mf The weak formulation [2] is

/;///{VLV.(DVGJ +pV®) - iwWp}dV

:[/W(DVé—%—pV(D)-ndS (13)

The weighting functions are taken as
W(z,r)e™. Angular harmonics proportion-
al to e~'™? represent the decomposition of the
solution periodic in # in a Fourier Series. The
angular mode number m is a parameter of the
solution. The surface integral is over all sur-
faces bounding the domain. The unit normal
for the surface integral is out of the domain at
the surface in question. The weak formulation
continues with the linearized momentum equa-
tion (4b) and linearized equation of state (4¢),
to rewrite equation (13) in the form

/// %{CQVW.W— (V.YW)(V-Vo)+
]
i [ W(V-V6) - (V-9W)o| - LW }dv
D g
://6—5{0 WV — VIW(V-Vé)
)
—inWq‘)}-ndS (14)

Note that the local steady flow dimensionless
velocity V is equivalent to the reference Mach
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number M, which in fact is local steady flow
velocity divided by the speed of sound at the
source plane.

The surface integral on the right hand side
of equation (14) is the natural boundary con-
dition. On the duct walls this provides the
boundary condition for either rigid walls (the
integral vanishes) or for a normally reacting lin-
ing with an impedance specified by equation
(5). In the present FEM implementation equa-
tion (5) is simplified by the elimination of the
term involving n-{(n-VV) on the right hand
side. In the duct geometry studied here this
term, which depends on the nonuniformity of
the steady fow field, is of little importance in
affecting attenuation (even though it is asymp-
totically small but not negligible, and crucial
in completing the analytical formulation).

Details of the FEM procedure for discretiza-
tion of equation (14), and other references, can
be found in {2]. A discussion of the implemen-
tation of the impedance boundary condition is
available in reference [5].

On the source plane and exit plane the nat-
ural boundary condition is used to introduce
the noise source and non-reflecting boundary
conditions. On these planes the acoustic poten-
tial is recast via an eigenmode expansion such
that the acoustic potential is given in terms of
the complex amplitudes of the right and left
propagating acoustic duct modes appropriate
for the geometry and flow conditions which pre-
vail there [6]. On the source plane, £ = 0 in the
present study, right propagating modal ampli-
tudes at the source plane are specified via a
forced boundary condition. Left running (re-
flected) modal amplitudes at the source plane
and right running modal amplitudes at the ex-
it plane are unknown and part of the solu-
tion. Left running modal amplitudes at the
exit plane are forced to vanish, imposing a non-
reflecting boundary condition. Details of the
modal boundary condition are available in ref-
erence [4].

Finite element discretization for acoustic
propagation is carried out on the same grid
with the same element type as used in the steady
flow model. Required data generated in the
steady flow representation is transferred direct-
ly to the acoustic analysis. Mesh density is gov-
erned by the demands of the acoustic problem
and is substantially more refined than would be
required in the steady flow analysis.

The FEM solution proceeds with the com-
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putation of the acoustic potential field. Post-
processing by the use of equation (4b) gener-
ates the acoustic pressure field. The solution
also includes reflected modal amplitudes and
transmitted modal amplitudes. Acoustic power
reflection and transmission characteristics are
computed directly from the input modal ampli-
tudes and computed reflected and transmitted
modal amplitudes. Reciprocity characteristics
of the scattering matrices and acoustic power
balances are also monitored as a check of com-
putational accuracy in the case of no acoustic
treatment on the duct walls [T7].

Post processed acoustic pressures are repre-
sented on iso-pressure amplitude contour plots
superimposed on the duct geometry. Compari-
son of FEM and multiple scales results is based
on visual comparison of these contours, but
perhaps more importantly on the basis of com-
puted power transmission coefficients.

Differences between Multiple Scales
and FEM Formulations

There are minor differences between the
multiple scales solution and the finite element
model. The field equations (3a)-(3c) and (4a)- -
(4c) are exactly the same in both cases, includ-
ing the convention for non-dimensionalization.
The implementation of the impedance bound-
ary condition in the FEM formulation neglects
the n-(n-VV)-term in equation (5). This is
done principally to simplify the FEM imple-
mentation of this difficult boundary term (it
requires a gradient of the steady flow velocity
which is already the gradient of the steady flow
potential). For a cylindrical duct this term is to
leading order in ¢ equal to %V ~el/Rx/R. So
it is small, but asymptotically not smaller than
any other effect due to duct variation. Never-
theless, we found as yet no indication that the
effect on attenuation predictions is significant.

The FEM formulation includes the propa-
gation of many modes and therefore scattering
is an integral part of the solution. This is man-
ifested by reflection of the incident mode and
other modes which are not incident as well as
the transmission of modes which are not inci-
dent. The multiple scales method utilizes the
fact that in the smooth parts of the duct any
scattering into other modes is normally neg-
ligible. The propagating sound is still mode-
like, albeit not in the strict sense of self sim-
ilar straight duct modes, but mode-like solu-
tions with slowly varying amplitude and phase.

81



At abrupt changes in geometry scattering into
other radial modes may be included (not done
here) by methods like mode-matching.

The FEM solution requires the source to be
represented in terms of input modal amplitudes
for eigenmodes for a duct with hard walls. The
source is always located in a section of the duct
which has rigid walls. The net effect is that
there is always a transition from a rigid wall
to an impedance wall at both ends of the duct
in the FEM model. This has implications for
scattering which are not readily quantifiable.

‘In the multiple-scales analysis the gener-
al solution is built up from a surnmation over
slowly varying modes. The natural way to test
its validity is therefore to study a single, soft-
wall, mode. In order to generate an equivalent
input in the FEM model it is necessary to rep-
resent the soft wall eigenmode as an eigenmode
expansion of hard wall eigen modes. Since this
sound field distribution, presented to the lined
duct, essentially “fits” directly into one soft-
wall mode, only little reflection at the source
plane is to be expected. A single mode multiple-
scales analysis is therefore simulated by a mul-
tiple mode FEM solution.

Finally, it is noted that the FEM model re-
quires conditions at the source and exit planes
which give rise to reflected modal amplitudes
and to the reflection free termination (or speci-
fied or computed reflection characteristics).
These conditions do not play an immediate role
in the analytical solution, with left and right
running waves already given explicitly. Al
though inherent in any practical application,
we have not tried to model these conditions in
the analytical part of the present tests in or-
der not to obscure the comparison and to re-
strict the sound field to that of a single, right-
running, mode.

It is not possible to make FEM and multiple-
scales models exactly equivalent, nor should
it be, since the multiple-scales solution is an
approximation based on well documented as-
sumptions. It is a goal of the numerical com-
parisons to be given here to investigate how
successfully the multiple-scales solution repre-
sents the more exact FEM model.

Results

The cases considered are grouped as the fol-
lowing 4 series of iso-pressure contour plots:
the first radial mode of
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fig. 4 m =10, w =10,
fig. 5 m=10, w =16,
fig. 6 m =10, w =50,
fig. 7 m =40, w =50,

is input under the following conditions:
fig. a  hard wall. no flow,
fig. b hard wall, flow,
fig. ¢ soft wall, no flow,
fig.d soft wall, flow.

The left column of the figures is the numerical

FEM solution, the right column the analyti-

cal MS (multiple scales) solution. “Soft wall”

denotes a wall impedance Z = 2 —i. “Flow”
denotes a mean flow with Mach number -0.5 at
the source plane. “First radial mode” denotes
in general the mode with smallest real part of
radial eigenvalue a. For the soft walls the pre-
dicted attenuation (10log of ratio of acoustic
power through source and inlet plane) is giv-
en in the caption of the figures. For the hard
walls the attenuation is either zero (mode is cut
on) or infinite (mode is cut-off and reflection is
negligible).

The selected cases do not show turning point _
behaviour (hard-wall cut-on, cut-off transition).

The possible differences between FEM and

MS are due to the following errors or modelling

discrepancies.

1. The approximation error of 0(c?). For this
we need an estimate of . Suitable is a typical
value of =Ry = E%Rg = O(¢). From for-
mula (6) it appears that Rf, varies between
-0.12 and 0.12 along [0,1.75], but increases
to 0.4 in the lip region [1.75,L]. If we take
¢ = 0.1, the estimated approximation error
is a few percent.

2. Small but inherent reflection in FEM at inlet

plane and lip region.

3. Not exactly the same source in soft wall cas-

es, since FEM uses a source defined by an ex-
pansion in a finite number (15) of hard wall
modes, a small distance (5L) away from
the lined section.

4. Slightly different impedance definition in flow

cases.

5. Slightly different mean flow. In MS the mean

flow field is approximated to the same level
as the acoustic field.
For highly attenuated or only cut-off modes
(m = 10, w = 10) of fig. 4a-d, the agreement is
almost perfect. None of the above errors seem
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to play a role.

For the series (m = 10, w = 16) of fig. 5,
with 1 (no flow) or 2 (flow) modes cut-on, the
agreement is good in the iso-contour plots, and
almost perfect in attenuation. Some wiggles
are visible in fig. 5b what is probably error type
1, due to interference with the other cut-on ra-
dial modes.

The high frequency series (m = 10, w = 50)
of fig. 6 has very low acoustic pressure val-
ues near the duct axis, and many radial modes
cut on (at source plane, no flow: 9, flow: 11).
We see strong interference with these higher
modes. The most important region near the
outer wall, however, is in very good agreement,
and for no flow the attenuation agrees exact-
ly. With flow the 1st and 2nd radial soft wall
modes happen to be rather close to each oth-
er, and a residual second mode (due to error
3) leads to a slightly (0.5 dB) different attenu-
ation.

The high m, high frequency (m = 40, w =
50) series of fig. 7 has 2 (no flow) and 3 (flow)
radial modes cut on, giving rise to some wiggles
in figs. 7a,b. Effects due to error 3 are probably
visible in fig. 7d, although the predicted attenu-
ation agrees very well. The (academic!) differ-
ence in attenuation of fig. 7c (195 and 210 dB)
is no numerical round-off error, but due to the
fact that the plotted mode is least attenuated
at the inlet but not at the source plane. Residu-
al modes due to error 3 are likely to dominate in
the FEM solution near the source plane, lead-
ing to a different attenuation.

Conclusions

Any selection of test cases is necessarily lim-
ited. It would have been easy to create a more
or a less favourable comparison, by making a
suitable selection of geometry and parameters.
This is not done here. We have defined the test
runs entirely on the basis of their relevance to
turbo fan engine inlet duct applications, and
we have not skipped unfavourable cases after-
wards. The only restriction we made was that
no cut-on/off transition in the hard walled duct
be present. This phenomenon is not yet includ-
ed in the analytical solution, while at the same
time, of course, it is absent in any lined duct.

So considering the fact that the cases are
likely to be a representative cross section of re-
ality, we think the conclusion is justified that
the MS and FEM solutions compare favourably,
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both in iso-pressure contours and in predicted
attenuation. Principle differences are related
to scattering at inlet plane, and to input mode
synthesis. The best results are obtained with
lining (reducing importance of reflection) and
when the modal structure permits few or no
cut-on scattered modes. The attenuation dif-
fers in general no more than a few tenths of a
dB.

The correlation shows that MS is definitely
useful in applications for assessing liner perfor-
mance in realistic geometries. Both extending
the theory, and further comparison with FEM,
for example with an MS implementation that
includes a complete modal spectrum and open
end reflection, is therefore to be recommended.
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Figure 5d: m = 10, w = 16, soft wall, flow;
att. 27.2 dB (FEM), 27.1 dB (MS)
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Figure 6d: m = 10, w = 50, soft wall, flow;
att. 1.49 dB (FEM), 0.92 dB (MS)
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ABSTRACT

In order to achieve satisfactory results
with finite element formulations for pressure in a
propagating acoustic field with relatively high
non-dimensional frequencies, the problem of
ever-diminishing mesh size must be resolved.
The convected potential formulation describing
an acoustic field introduces problems not
addressed in the simple Helmholtz equation.
Post-processing to calculate pressure is necessary
and this leads to additional dimensionality
problems beyond those encountered in modeling
acoustic potential due to an inaccuracy appearing
in the calculation of the potential derivatives.
This oscillating erroneous behavior is rooted in
the element shape functions and modifications
have been made, using elements of higher order,
to contain this discrepancy enough to where
post-processing does not add significantly to the
dimensionality problem. In so doing, satisfactory
pressure models for non-dimensional frequencies
up to 100 in a variable area circular duct with a
wide range of subsonic Mach numbers and
angular modes can be calculated in a reasonable
sized domain.

INTRODUCTION

Application of the finite element
method (FEM) in modeling acoustic propagation
leads to problems of large dimensionalities when
high frequencies are considered. A mesh of
about 10 nodes per wavelength is considered
adequate rtesolution in order to achieve
acceptable results in modeling propagating
waves. Simply reducing the mesh size is
certainly an option. However, it becomes quickly
impractical and computationally expensive.
Several approaches have been studied in order to
deal with the dimensionality problem.

One common approach is to lower the
number of nodes required per wavelength. In
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acoustic radiation to the far field the
development of infinite elements, which
incorporates spatially harmonic radiation into the
shape functions, has crrf:atly reduced the far field
dimensionality problem'”. The earliest approach
was based on exponential decays with radial
distance'. Later, and with more success, mapped
infinite elements were developed based on the
asymptotic behavior of the far field and the
correct spherlcal or_ cylindrical decay was
mcorporated‘ Burnett’ extended this method to
use prolate spheroidal coordinates, allowing it to
be more flexible in modeling objects with large
aspect ratios, i.e. reducing the extent of the
conventional mesh in the near field, thus
reducing the overall mesh. A variation of the
infinite element method is that of the wave
envelope element method which restricts the
computatlons to a large but finite domain -7
Astley® incorporated the use of complex
conjugates weighting as opposed to Galerkin
weighting, reducing the integrals to simpler
forms, thus enabling Gauss-Legendre
integration. The penalty was a non- symmetric
coefficient matrix, although with less frequency
dependence. This method was also capable of
reducing the reach of the conventional element
domain while extending into flow problems’ i
Mapped infinite wave envelope elements have
attributes of both infinite and wave envelope
elements. This technique has recently been
extended to include three-dimensional elements
of variable order’, sperhoidal elements of
variable order to improve modeling around a
slender or flat object’, and a non- reﬂective
boundary with uniform steady flow'. The
mapped infinite wave envelope elements can be
used in what is normally considered the acoustic
near field because of their adjustable
interpolation  order, thus reducing mesh
refinement and dimensionality to a greater extent
than with previous approaches. Chadwick and
Bettes'' modeled the phase p and the wave
envelope A rather than the potential ¢ (the
potential of a traveling wave is expressed as
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p=Ae”®) for finite wave envelope elements and
were able to use a coarser mesh in the near field.
This was later extended to infinite elements'”.
The penalty however is that an 1teration
procedure is necessary. All of the previously
mentioned approaches are well suited in an
exterior region. Inside a duct, however, the
complexity of the acoustic field makes for
limited success. In fact, Astley and Eversman"
suggested the use of traditional wave envelope
elements inside a duct before they were used in
the far field, but it was effective in only special
circumstances.

The most traditional FEM approach in
dealing with short waves is to let the mesh size
decrease while the piecewise polynomials of
degree p are constant. This is known as the h-
version, while the p-version leaves a fixed mesh
and allows p to increase. These have been
combined and extended into the adaptive hp-
version. For a detailed background and method
of implementation see references [14] and [15].
In the field of acoustics this method has recently
been used in modeling the Helmholtz equation
for non-dimensional frequencies up to 30w e,
Although a significant decrease in total degrees
of freedom is achievable because of its adaptive
behavior, it is computationally expensive due to
the iteration procedure, despite exponential
convergence. The nodal density is still needed at
about 10 nodes per wavelength for reasonable
errors.

The incorporation of wavelike behavior
into the elements has not been limited to infinite
and wave-envelope elements. Babuska and
Melenk introduced the partition of unity method
(PUM) based on introducing prior knowledge
about the governing differential equation into
non-polynomial functions used for the solution
approximation, rather than traditional (mapped)
polynomials'’.  These  special  functions
approximate well the exact solution and the wave
direction at each node is implicitly determined. It
is advantageous to use a set of plane wave
solutions of the homogenized Helmholtz
equation as the local function basis.
Computational cost is still a problem compared
to non-iterative approaches. In reference [17] it
is also suggested that PUM is suited well for a
mesh-less formulation. More recently, an
element-free one-dimensional Galerkin method
was applied to the Helmholtz equationm.

The combination of PUM and a
standard FEM has been called the generalized
finite element method and seems to offer a
significant reduction in dimensionality versus

2

standard FEM without requiring re-meshing'”. In
a recent presentation Bettes and Laghrouche
extended this idea to the Helmholtz short wave
problemzo. An approach based on a somewhat
similar idea as that behind the PUM was that of
residual-free bubble functions™. It added these
functions to the piecewise linear polynomials
and used subspaces where these functions
satisfied the differential equation strongly and
solved analyticaily for them. This was applied to
the Helmholtz equation for relatively low non-
dimensional frequencies (<10). Franca and
Macedo extended this to a more flexible two
level method?>. They used a submesh defined in
each element interior and solved the differential
equation numerically for the bubble functions,
allowing for irregular meshes.

It is important to note that the methods
used in reference [14] to [22] have all been
applied when solving the Helmholtz equation.
The introduction of a moving medium in the
acoustic field has lead to a different approach.
The FEM model used in this paper is potential
based and post-processes to find the acousti¢
pressure. This convected potential formulation
introduces problems not encountered in working
with the Helmoltz equation. Among them is the
consideration of an effective wavelength, due to
flow velocity and while the potential solution
abide by the expected nodes per wavelength ratio
of 10 to 12, the calculation of pressure which
involves the derivative of the potential solution
apparently does not. The nodal density required
by the post-processing adds greatly to the
dimensionality of the problem. An investigation
into the cause of the shortcoming and possible
simple modifications for this model was
conducted. The variation in the order of the
polynomials was performed for both a quasi-one
dimensional and an axially symmetric system.
The results were considered in a ducted acoustic
field with non-dimensional frequencies up to 100
and a wide range of propagating modes. It
involved large area variations and most of the
subsonic flow range. The behavior of this high
frequency complex acoustic field was studied
and the post-processing problem was greatly
diminished while a possible method for an
extension to improve the dimensionality of the
overall system was considered.

FORMULATON OF PROBLEM

The problem in question is the
propagating acoustic field in a moving medium
inside a circular non-uniform duct. A typical
geometry of such a duct 1s seen in figurel. The
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noise source is at the left end and the medium
may flow in either direction with left to right
considered positive direction. The acoustic field
description is based on a convective potential
formulation obtained by considering unsteady
acoustic perturbations on a steady compressible
potential flow. Eversman et al. previously
developed a FEM model for the turbofan engine
inlet radiation problem’®. This FEM model is
basically the same without the exterior region but
with the capability of handling compressible
flow. An extensive description of the
formulations and the computational scheme can
be found in reference [6] and the references
therein. However, a summary of the major
features of the approach will follow.

| r_"—\/“—'_

Figure 1. Non-dimensional computational
domain

It is assumed that the moving medium 1is
non-viscous and that all processes are isentropic.
The field equations for both the potental flow
and the acoustic perturbations in non-
dimensional forms are derived from the non-
dimensional continuity, momentum, and energy
equations, the latter in the form of the isentropic
equation of state:

D 5. (pF)=0 (n
ot
7 =-p @
ct Je,
1, .
p=—p (3)
7

p, p, and ¥ are non-dimensional pressure,
density, and velocity, respectively. y is the ratio

of specific heats. The non-dimensional speed of
sound 1s

== pr )
Yol

p, is the reference density and c,is the

reference speed of sound and are taken as their
respective values at the source plane. The
reference length R is defined as the duct radius
at this plane. Pressure has been made non-

dimensional by p,c,z, density by p,, velocities
and speed of sound by ¢, . velocity potential by

c,R . and time by R/c,. The introduction of

velocity potential and the linearization of the
conservation equations to the first order in
acoustic perturbation yields

Vilp V) =0 (5)
for steady mean tlow, and
c ,
LV (09 500 (O)
c
for the acoustic perturbations, where ¢, and p,

are the mean flow potential and density.
respectively, and ¢ and p are acoustic

potential and density. The mean flow and
acoustic densities are determined by
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where ¢7 = p§™" is the local speed of sound. The

acoustic pressure is related to the acoustic
potential by
p= —P{% +(Vy, - V¢)] 9
ct
A standard finite element Galerkin
approximation is used to solve the problem. The
computational domain is modeled using either
quasi-one-dimensional or axially symmetric
formulations with mesh elements of different
order. The solution is achieved through three
steps:

e The time invariant mean compressible flow
problem. Equation (5) is solved in the
domain in an iterative procedure for the flow
potential.

e Uniform duct eigenvalue problem. A
uniform duct eigenvalue problem is solved
on the fan face in order to express the fan
and exit face boundary conditions in terms
of duct eigenfunctions.

e Acoustic propagation problem. Equation (6)
is solved for the acoustic potential, using
equation (8). The solution is desired in the
case of a harmonic source on the source
plane with time and angular dependence

given by & 11=m9 where 1, is the non-
dimensional input frequency (7, =@R/c,,
@ is the input frequency) and m is the
angular mode number.

The acoustic pressure distribution in the duct is

calculated through post processing of the
acoustic potential solution, using equation (9).
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Figure 2a. Pressure contours using quadratic elements for n,=25,M;=.1,m=1,and N/A=11.1

Figure 2b. Pressure contours using cubic elements for 77,=25,M; =.1,m= 1,and N/A=11.3

As far as dimensionality is concerned the
difficulties of this model lie within this process.
For high values of input frequency the nodal
density of the mesh necessary to achieve
acceptable pressure results has to significantly
exceed 10 nodes per wavelength. An attempt to
reduce the overall dimensionality problem can
not be made until this ratio applies to satisfactory
pressure calculations.

RESULTS AND DISCUSSION

In this section some numerical results
are given to demonstrate the improvements made
in reducing dimensionality of the domain. The
solution of the acoustic radiation problem yields
the acoustic velocity potential at the nodes of the
mesh. The solution that yields the acoustic
pressure is obtained from equation (9) as

p=-poling+ (V4 V0] (10
Pressure at a node is calculated from the
elements sharing that node and the value of
pressure is obtained as the average of the nodal
pressure found in each element. An improvement
in results can be obtained by evaluating acoustic
pressure at Gauss points inside the elements
rather than at nodes and plot these, as is done in
reference [6]. However, this will not totally
eliminate the inaccuracies in the results. As seen
in equation (10) pressure calculations require
derivatives of acoustic potential because of the

4

moving medium. This is the source of the
difficulties of this model.

Figure 2a shows pressure distribution
for a relatively simple acoustic field with non-
dimensional frequency of 25. This mesh has a
nodal density of about 11 nodes per wavelength,
N/X\ and 9021 degrees of freedom (DOF) and is
more than adequate for finding satisfactory
potential, ¢. In fact only a nodal density of 9

nodes per wavelength is needed in certain
regions due to the flow effect. The flow in this
case varies from Mach .1 to .13 and the effective
wavelength A is given according to A =(1+M)\
As seen, even at these very low Mach numbers
the improper behavior of pressure is present.
This behavior is actually so strong that the total
number of DOF needs to be doubled before
significant improvement can be seen. The root of
this problem lies in the calculations of the
potential derivatives, or the acoustic velocities,
and the use of quadratic serendipity elements. In
this case the acoustic propagation and the flow
are predominately axial. This makes O¢/Ox the
more significant part of V¢ i equation (10)
when calculating pressure. The derivative at each
node is calculated from the average based on
every derivative calculated at that node, thus
assuring  continuity. But since quadratic
serendipity elements are used ¢¢/0x 1s linear in
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x and quadratic in r while ¢¢/Cr is quadratic in
< and linear in r. When studying the acoustic
velocity components separately the error appears
to lie predominately in the axial direction of
g¢/éx. The error of 0J¢/&rin the radial
direction. which is linear in r, does not affect the
pressure for one main reason. &¢/&r is of small

magnitude and is multiplied with the relatively
small  flow velocity component in the r-
direction. In addition, for this case ¢@/dx in the

axial direction behaves much more smoothing
than 3¢/dr in radial direction.3¢/Cr in the

radial direction experiences more reflection from
the outside wall and because of the harmonic
appearance of the error, it is possible that there is
some cancellation of the error because of this
reflection since it does not appear as strong in the
radial 8¢/ér as in the axial 0@/0x, both of

which are linear in r and x, respectively. The
error is of such a nature that it often appears
more distinct in the simpler regions, not those
heavily exposed to reflection and scattering. The
order of the velocity components in different
directions is at the core of the unacceptable
behavior. A change to Lagrangian elements will
have no effect on the order of the acoustic
velocity terms, only on the number of terms
involved. The increase in the appearance of error
in certain regions, especially along the outside
wall, occurs because the magnitude of 8¢/ dx

increases here. The error will decrease with
increased nodal density.

The same acoustic fleld was modeled in
figure 2b using cubic serendipity elements and
almost the identical nodes per wavelength value.
Again the mesh is adequate for finding
acceptable acoustic potential. In this case there
are only 7066 DOF due to the use of cubic
serendipity elements rather than quadratic ones.
There are no visible traces in the pressure
contours of the error encountered previously.
However, studying the acoustic velocity
components there are small tendencies for this
erroneous oscillating behavior, despite having
terms of at least quadratic order. It is clear that
the error can not be completely eliminated using
cubic elements. This will, however, greatly
contain it in numerous cases. The effect of the
error on the pressure increases as the flow speed
increases. This can be seen in figure 3a where
Mach number ranges from .3 to .73. With the
effective wavelength A, being more than one and
a half of X the value of 11.1 for N/\ is far more
than needed for satisfactory potential results. Yet

b}

pressure is far from acceptable in the quadratic
case. It is important to note again that the error
occurs in the calculation of the acoustic velocity

and that an erroneous V¢ is amplified by Vg, .

not in the acoustic potential calculation (which is
satisfactory for N/\, greater than 10). The reason
the error appears greater as M increases is the
product term involving V¢, in equation {9). The

magnitude of the error in the acoustic velocity s
not affected by flow velocity. There are simuilar
tendencies for cubic elements, however not
noticeable as seen in figure 3b. Exactly how
much impact the presence of a moving medium
in an acoustic field has on the modeling becomes
clear when the flow is directed into the acoustic
propagation. The effect of flow in the opposite
direction makes it necessary to increase the nodal
density to a N/X\ of 17 in order to account for the
effective wavelength adjustment. The flow speed
ranges from —3 to -4 and this means N/ is
about 10.5. Reference [6] addressed this in
considering turbofan inlet problems and it is
clear from figure 4a how much more sensitive
the problem becomes. The degrees of freedom
necessary in the quadratic case for satisfactory
potential results have increased to 22541, yet the
pressure contours are far from acceptable. The
cubic model has to require 16354 DOF in order
to have 17 nodes per wavelength and to handle
the potential, but this is also enough to handle
pressure.

In cases with higher angular mode
numbers it is generally easier to model acoustic
pressure, as seen comparing figures 3a and 5a, in
which the only difference is higher angular mode
number in the latter case. The mode number
increase appears to cause a decrease in the
magnitude of d¢/8x over large regions of the

domain, except along the outside wall. It
basically shifts the acoustic velocity and pressure
gradients away from the x-axis. It also causes an
increase in 8¢/ &r in the radial direction relative
to 8¢/ ax. This will not increase the appearance
of the error overall since 8¢/&r in the radial
direction is multiplied by the radial flow velocity
component which is still small.

The case involving larger contraction of
the cross-sectional area causes the most complex
acoustic field. This will greatly increase both the
radial flow component and the radial acoustical
(8¢/cr in the radial

direction increases more than that in the axial

velocity component
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Figure 3a. Pressure contours using quadratic elements for 77,=25, M;

=35 m=1,and N/A=11.1
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Figure 3b. Pressure contours using cubic elements for 77, =25, M; =.5,m=1, and N/AA=113
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Figure 4a. Pressure contours using quadratic elements for n,=25,M; =-3, m=1,and N/A=17
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Figure 4b. Pressure contours using cubic elements for n,=25, M

=.3 m=1,and N/A=17

direction), as well as reflection and scattering.
The flow speed ranges from .1 to .24, indicating
an N/A of 9 would be adequate for potential
calculations. This time the magnitudes of ¢¢/cr
are significant, vet because the behavior across
the duct of &¢/ér is influenced by reflection

6

and scatter the error might be subjected to some
cancellations. 8¢/d&x in the axial direction 1s
still a problem, but now the reflection and scatter
also make an impact in this direction for most of
the domain. More significant, it is no longer
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Figure 5a. Pressure contours using quadratic elements for 77, = 25.M; =5, m=3,and N/A=11.1
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Figure Sb. Pressure contours using cubic elements for 7,=25,M; =.5,m=3, and N/A=11.3 .
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Figure 6a. Pressure contours using quadratic elements for 77, =25, M, =.1,m=1,and NJA=11.1
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Figure 6b. Pressure contours using cubic elements for n,=25,M; =.1, m=1, and N/A=113

totally dominating equation (10) and thus the
error it carries becomes diluted. The quadratic
model is capable of modeling this case and there
are not any significant differences when
comparing the quadratic and cubic models
(figures 6a and b). The area contraction will
cause large increases in pressure magnitudes.

Note that this is not why the error seems
unnoticeable. In a smooth field larger acoustic
velocity values will lead to the larger errors. If
the same contour values as in previous figures
were used. the error would still not be noticeable
in this case.
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The overall tendencies seen in figures
2a to 6b stay the same as the frequency is
increased. Figure 7 gives an overview of the
necessary nodal density for acceptable pressure
results for both the quasi-one dimensional and
cylindrical cases. These results model the
acoustical field in a duct with a .9 area
contraction ratio, inlet Mach number of .1, and
an angular mode of 1 (, as in figures 2a and b).
The tolerance level for what can be viewed
acceptable has been more stringent in these cases
for the sake of consistency. The computational
time for two-dimensional quadratic and cubic
elements beyond non-dimensional frequencies of
50 and 100, respectively, becomes excessive.
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Figure 7. Nodal density vs. non-dimensional
frequency

The most important result is that with
elements of cubic order the error can be
contained enough to the point that the accuracy
of the potential solution becomes the deciding
factor in determining nodal density, not the post-
processed calculation of pressure. Note that the
benefit of going to even higher order elements,
as is done in the one-dimensional case, is
questionable. Very little seems to be gained.
While overall the cubic serendipity elements
perform better than quadratic serendipity
elements in modeling pressure there are also
some possible problems in its performance.
Although nodal density might be the same in
both cubic and quadratic models, the cubic
elements cover a larger domain and therefore
there is a larger gradient within this element,
causing derivatives of greater magnitude to be
calculated. A decrease in element size can

8

correct the problem, however this will erase the
gains made in reducing dimensionality.

The use of cubic elements, although not
totally eliminating the errors occurring in the

post-processing, has contained those
inadequacies enough to where certain high
frequency models that previously — were

impractical to study due to dimensionality
problems, now can be calculated in reasonable
time. The first set of problems involves the
acoustic field in a duct at a non-dimensional
frequency of 50 and the impact of the area
contraction ratio changing from 9 to .5. The
flow velocity ranges from Mach number of .1 to
13 ina, from .1 to .24 in b, and from .1 to Sin
¢, with an angular mode of 1. This model is seen
in figures 8a to ¢ and requires 27631 DOF.

To model an acoustic field with a non-
dimensional frequency of 100, angular modes
ranging from 1 to 20, and the flow velocity
varying from Mach .3 to .4 in figures 9a and b
and Mach .25 to .9 in figures 102 and b, a
domain of 91906 DOF is needed. Figures 9a and
b compares angular modes. The same for figures
10a and b, but with larger area contractions, thus
higher flow velocities. Figures 9a and 10a shows
the effect of changing the cross-sectional area.
With the same degrees of freedom and a flow
speed ranging from Mach .3 to .4, but in the
opposite direction, the model is limited to
satisfactory  results  for  non-dimensional
frequencies up to 70. The computer time for this
model using an HP Visualize C200 with a
specfloat FP95 of 21.4 was about 30 to 40
minutes for the incompressible tlow code and
about 100 minutes for the acoustic propagation
code. Each case in figures Sa to ¢ took only
about 15 minutes for both flow and propagation
calculations combined.

CONCLUSION

It is questionable if cubic elements will
be suitable for models having a non-dimensional
frequency much beyond 100. It is apparent they
can give acceptable results for nodal densities
not much greater than those required for
potential calculations. However, the tendencies
of the oscillating errors are still present and this
probably needs to be resolved before an attermnpt
can be made at going below the 10 nodes per
wavelength required for satisfactory results in
the potential formulation. Since this error seems
to be a function of both nodal density and the
order of the shape functions it cails for further
study into the use of various shape functions and
other types of elements.
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Figure 8a. Pressure contours for n,=30,M; =.1,m=1, and N/A=11.3
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Figure 8b. Pressure contours for 77, = 50,M; =.1,m=1,and N/A=11.3
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Figure 8c. Pressure contours for 7,=50,M; =.1,m=1, and N/A=11.3
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Figure 9a. Pressure contours for 7,= 100, M, =3, m=1,and NA=10.4
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Figure 9b. Pressure contours for n,= 100, M; = .3, m =20, and N/A=10.4
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Figure 10a. Pressure contours for n,=100,M; = .25, m=1, and N/A=104

Figure 10b. Pressure contours for n7, =100, M;
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THE BOUNDARY CONDITION AT AN IMPEDANCE WALL
IN A NONUNIFORM DUCT WITH POTENTIAL MEAN FLOW
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ABSTRACT

The boundary condition at an impedance wall in a duct with a steady mean flow requiring
the specification of the normal component of acoustic particle velocity is examined. It is found
~ that when implemented in the weak formulation of the finite element method it can be
considerably simplified. The boundary condition would appear to require data which includes the
tangential derivative of the tangential mean flow velocity, the normal derivative of the normal
component of mean flow velocity, and the derivatives of the mean flow density and the boundary
admittance along the boundary. It is shown that with suitable rearrangement the normal and
tangential velocity derivatives can be eliminated, as can the derivatives of the mean flow density
and admittance. The boundary condition becomes only slightly more complicated than the
corresponding boundary condition when mean flow is absent, and is no more difficult to
implement, requiring only local values of tangential mean flow velocity, density, and admittance

which are already required as data for the weak formulation of the field equation.

INTRODUCTION
Figure 1 shows the geometry of a typical non-uniform duct section. The duct is of non-

uniform cross section with walls S~ whichin general include an acoustically absorbing section
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imbedded in an otherwise acoustically rigid wall. Absorption characteristics of the boundary are
given in terms of the admittance 4 for a locally reacting liner. The duct in Figure 1 is depicted
as axially symmetric, however the results obtained here do not depend on such an idealization.
The duct geometry includes the definition of a unit normal 7 directed out of the fluid region,
and therefore into the duct wall. The notional displacement of the duct wall, normal to the wall,
is given by ¢ which is a function of location on the wall. In harmonic motion with time
dependence e ™ the admittance relates this displacement to the acoustic pressure according

to

in ¢ = Ap (1)

When this admittance relation is applied to acoustic propagation in ducts with steady
mean flow it produces what appears to be a very difficult boundary condition at the admittance
~ wall. Myers [1] derived the correct boundary condition which relates the normal component of
acoustic particle velocity to the particle displacement in non-viscous flow for harmonic acoustic

perturbations at frequency m_ as

\7~ﬁ=ian+I7r-VC—Cﬁ-(ﬁ-V)V’r (2)

Here v-7 is the normal component of acoustic particle velocity at the wall and I7r is the
tangential mean flow velocity at the wall. Propagation in non-uniform ducts is normally modeled
under the assumption that the mean flow and acoustic perturbation are defined by a steady flow
potential such that I7r =V, ,andbyan acoustic potential such that ¥ = V¢ and an acoustic

momentum equation

p=-plind+7 Vo] 3)
2
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A combination of equations (1), (2), and (3) produces a single boundary condition in terms of
acoustic potential which is difficult to implement in numerical schemes. It is found that data
required to model the boundary condition includes the derivative of the impedance and mean
flow density along the boundary. In addition, and much more of a problem, is the requirement
for the tangential derivative of the tangential component of mean flow and the normal derivative
of the normal component of mean flow. These present particular difficulties because the mean
flow data in finite element propagation models is generally obtained from apotential formulation
for the steady flow and the required derivatives of velocity require second derivatives of the
potential.

The boundary condition described by equations (1), (2), and (3) has been implemented
in a finite element scheme by Eversman and Okunbor [2]. They used an approximation, argued
to be adequate for ducts with changes in cross section which are relatively small, which ignores
the term requiring the normal derivative of the normal component of mean flow velocity, and
additionally ignores the effect of duct wall curvature on the calculation of the rates of change of
quantities along the wall. The approximation for the tangential derivative of the tangential
component of mean flow velocity is retained. The computation of this derivative is not
considered to be very accurate. None of these approximations are thought to be significant for
attenuation calculations in the geometries considered.

Rienstra [3] has approached the modeling of acoustic propagation in ducts with slowly
varying cross section by a perturbation scheme, and the analysis procedure requires the full
modeling of the boundary condition. However, because his procedure is analytic the
implementation of the boundary condition presents no difficulty and the issues which arise in a
numerical model are not present.

The motivation for the present investigation is the requirement to verify a reciprocity
relationship which exists for acoustic propagation in non-uniform ducts with mean flow and
absorbing linings. In order to show reciprocity no approximation in the boundary condition is
permissible. Numerical experiments conducted with the approximate model of the boundary

condition described in [2] suggest that reciprocity is nearly satisfied, but one is not fully
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convinced that the small discrepancies are in the approximate model or in the reciprocity
principle. The following work derives a model of the boundary condition for the FEM
formulation which is exact within the FEM formalism, is easy to implement, and will replace
the approximation in [2]. Work to be subsequently reported will show that the new boundary

condition results in a numerical substantiation of the reciprocity principle [4,5].

FINITE ELEMENT FORMULATION FOR DUCT PROPAGATION

Application of finite element modeling to acoustic propagation in nonuniform ducts with
steady mean potential flow has been previously reported [2 ]. A formulation in terms of acoustic
potential is used to reduce the field equations to a single scalar variable. In this investigation the
geometry of the duct and steady flow field is axially symmetric. The acoustic field is not axially
symmetric but is represented as azimuthally periodic in a cylindrical coordinate system with " x
being the axis of symmetry, r the cylindrical radius in a circular cross sectionat x = 0,and 6
~ the angular coordinate. Solutions are sought in angular harmonics of a Fourier Series in 6
enumerated by the angular mode number m . This reduces the solution domain to a two
dimensional x ,  plane, shown in Figure 1. The duct shapeina 6 = constant plane shows the
surface S which defines the duct shape and could include an inner surface for an annular duct.
Partof S includes S, which is a locally reacting acoustic treatment.

The acoustic field is assumed to be harmonic in time at non-dimensional frequency 1 .
Geometry is non-dimensional based on a reference length generally chosen as the radius of the
inlet at the source plane, R. Acoustic and steady flow variables are non-dimensional based on
reference values of the speed of sound and density of the medium, p_, c_, generally defined at
the plane of the acoustic source. The non-dimensional frequency isn =0k /c_,with wthe
harmonic source frequency.

Reference [2] discusses in detail the finite element modeling of acoustic propagation in
and near ducts carrying mean flow. The field equations for continuity and momentum and the

isentropic equation of state are used in a weighted residual statement to obtain an integral
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formulation which is then written in discrete form using standard FEM procedures. In terms of

acoustic potential the weak formulation is

p ~ = - _
fff——;—{cerW-Vcb - (Vr'VW)(Vr'VCb) + in,[W(V,'VCb) - (V,‘VWN)] ‘TliW(b ydv
- Cr

([ 2w - T, T0) - in, 70 s @
s° ¢,

where the local non-dimensional steady flow velocity is I7r = Vd)r , with d)r the non-
dimensional steady flow velocity potential. The local non-dimensional density and speed of
sound are p_, ¢, . The surface integral on the right hand side introduces the noise source and
termination conditions on S or S, and a possible impedance boundary condition on S inside
~ the duct. In the present investigation it is the impedance boundary condition which is of interest
on S ,a portion of S. In equation (4), the weighted residuals statement, W represents an
arbitrary weighting function selected from the class of continuous functions. In this weak
formulation the approximation to the solution ¢ is also chosen from the class of continuous
functions

At a duct wall the mean flow is tangential to the wall and I7r A = 0 causing the
boundary integral (the contribution to the right hand side of equation (1) related to the impedance

condition) to become

I = [ferV(b-ﬁdS (5)
Sw

With the Myers boundary condition { 1 ] and with Vcbr'ﬁ = 0 on the duct wall surface S_, the

integral of equation (5) on S becomes
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L= [ [te Wling + 7, V¢ - CA(AVIV,1}dS (6)
Sw

The following vector identities (suggested in a similar context by Moehring [6]) are introduced

(with account taken of the special circumstances of the present problem):

p WV V(= pV VW -pC vV-.vw

VoV =0

r.r

p V VWG =Vp W v (7

AVx(Axp wiv) = Vep WCV - A-(AV)p WV,

With the use of the identities of equations (7), equation (6) can then be reformulated as

I, = [ [{e,6Uin W -7 YWIyds = [ [{(#Vx(ixWp LV )}dS ©)
S, S,

Following the development of Moehring [6], the last integral can be written as a line integral on

6
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the boundary I' of the surface S by using Stokes’ Theorem. The boundary curve ["should
enclose the portionof S _on which there is a non-zero admittance, but should be located where
the admittance vanishes, as shown in Figure 2. I' consists of closed curves Fl and Fz‘
circumscribed on the duct wall at either end of the duct, chosen to be outside the region in which
the lining of finite length has non-zero admittance, that is, in the regions in which the duct wall
is rigid. There is of course a portion of I' which runs along the duct wall between ') and

I’2 to complete the closed curve of Stokes’ Theorem, but this curve is traversed twice, once
in each direction, and has no net contribution. To make use of Stokes” Theorem it is required that
the acoustic field and the wall displacement be continuous on S . Hence, if the acoustic
treatment is of limited length imbedded in an otherwise rigid wall duct, the transition from rigid
wall to admittance wall, as well as the variation of admittance along the treated wall, must be

continuous. If this condition is met, Stokes’ Theorem can be cast in the form
H (7-Vx(fixp WV )}dS = f(ﬁx p WV )dl + f(ﬁx p WV )-dl 7)
Sw I-‘1 FZ

The integral on the surface S, vanishes if the line integrals vanish. On a hard wall the line
integrals vanish because the boundary displacement vanishes. This means that if the condition

for the use of Stokes’ Theorem is met, then the integral of equation (6) is

1= [[¢e,CLin® -V, VW] }dS ®
Sw

At a wall of admittance 4 equations (1) and (2) are used to replace the wall displacement {
and the pressure with velocity potential ¢. The result is the new weighted residual boundary

integral on the duct surface S
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r

L= - [[AG N Td « W76 - 07 9F = - (7, TNT, 70} O
b ) r r r r in r r

The weighted residual form of the boundary condition of equation (9) is a considerable
simplification of the boundary condition which would result by a direct use of equations (1), (2)
and (3). In the latter case it would be found that the derivatives of the admittance A and the
steady flow density p_are required. In addition the tangential derivative of the component of
mean flow velocity tangential to the wall and the normal derivative of the normal component of
mean flow velocity at the wall are required. Current implementations of the FEM formulation
from which the steady potential flow field is obtained are not well suited for the accurate
determination of these second derivatives of velocity potential. The modified version of the
boundary condition neither requires data whichisnot directly determined from the potential flow
model nor requires any operations which are not required in the discretization of the field
equations (left hand side of equation (4)).

The restriction that the admittance is continuous on the duct wall is related to modeling
difficulties addressed by other authors. Moehring [6 ] has noted that in the acoustic potential
formulation for discontinuous admittance variation there is no clear condition to be imposed on
the acoustic field or wall displacement at the discontinuity. Rebel and Ronneberger [7 ] have
shown that the condition of admittance discontinuity and the assumption of potential flow at the
wall (no boundary layer) causes a problem with the underlying physics of the flow related to the
absence of shear stresses. In this analysis these issues have been eliminated by requiring that the
admittance vary continuously. In practical terms, this is accomplished by making
“discontinuities” rapid, but continuous, variations (easily done by an appropriate definition of
the local admittance). One suspects that numerically this may be a non-issue, because in the weak

FEM formulation the role of discontinuities is reduced.
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AN ALTERNATE APPROACH
An alternate approach to the simplified boundary condition is available which produces
a boundary condition useful for numerical models which are not based on the weighted residuals
formulation. The Myers boundary condition of equation (4) can be written
p,ff"ﬁ=in,p,C+p,V,-VC-p,Cﬁ'(ﬁ-V)V, (10)
The steady flow continuity equation
VoV =0 (11)
is used to establish that

oV V{=VpL vV (12)

It can also be shown that since on the duct wall ne I7r =0,

prCﬁ-(ﬁV)Vr:ﬁ (7-V)p ¢V (13)
With these results it can be shown that

. _ a

A (- V)p, 07, = = (0,0 V) (14)
and

- d o) .
V'P,CVrzT(P,CV,)*”T‘(P,S V) (15)
OT T On n
9
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Directions tangential and normal to the duct wall at the wall surface are denoted by T, n .
v,V are the tangential and normal components of the steady flow velocity. At the duct wall

T

V. vanishes. Therefore, the boundary condition on the duct wall is

a

- =

. 5]
p,V'n=1n,p,C+5;(p,CV,) (16)

This form of the boundary condition, not in weighted residual form, could be used, for example,
in a finite difference formulation. With { replaced by equation (1) and p replaced by equation
(3), it is found that derivatives along the wall of mean flow density, wall admittance, and mean
flow velocity are required, however the normal derivative of the normal flow velocity component
is not required. Equation (16) can be used in the weighted residual formulation to reproduce

equation (9), with the same restrictions.

- CONCLUSION

The Myers acoustic boundary condition at an admittance wall in a non-uniform duct
carrying potential mean flow [1] has been restructured using identities of vector calculus to
obtain a form well suited for finite element predictions of propagation. If applied without
simplification the boundary condition would require data on the spatial derivative along the wall
of mean flow density, the tangential spatial derivative of the tangential mean flow velocity at the
wall, the normal spatial derivative of the normal mean flow velocity at the wall, and the spatial
derivative along the wall of the admittance. After simplification only local values of density,
tangential flow velocity and admittance are required. The normal component of mean flow
velocity is eliminated completely. Implementation of the boundary condition is easily
accomplished in finite element models.

An alternate approach has been used to simplify the Myers boundary condition in a form

useful for numerical modeling not based on the weighted residuals approach of finite element
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analysis. The normal derivative of the normal mean flow velocity component at the wall is
eliminated, however derivatives along the wall of mean flow density and velocity and wall
admittance are retained.

The net effect of the boundary condition on prediction of attenuation in ducts in FEM
models has been found to be minor when compared to a former approximation introduced for
computational efficiency (the new exact formulation is found to be even more computationally
simple). For calculations made to validate acoustic reciprocity, the exact form of the boundary
condition introduced here is essential, and it is found that predicted reciprocity relationships are

accurately verified [4,5].
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ABSTRACT
A reverse flow theorem for acoustic propagation in compressible potential flow has been

obtained directly from the field equations without recourse to energy conservation arguments. A
reciprocity theorem for the scattering matrix for propagation of acoustic modes in a duct with
either acoustically rigid walls or acoustically absorbing walls follows. It is found that for a source
at a specific end of the duct, suitably scaled reflection matrices in direct and reverse flow have a
reciprocal relationship. Scaled transmission matrices obtained for direct flow and reversed flow
with simultaneous switching of source location from one end to the other also have a reciprocal

relationship. Numerical verification of the reciprocal relationships is given in a companion

paper.

INTRODUCTION

The general principle of acoustic reciprocity in a medium at rest is well known and 1s
derived in [1] by direct manipulation of the field equations in the case of harmonic time
dependence. By essentially using this starting point, Eversman [2] has demonstrated and
numerically verified reciprocal properties of the scattering matrix for acoustic modes incident,
reflected, and transmitted in a non-uniform duct in the absence of mean flow. Moechring [3], by
using an approach based on energy conservation, has arrived at the same result when differences
in definitions of the normalization of acoustic modes are considered. Moehring’s approach

depends on a suitable definition of acoustic energy density and acoustic energy flux, which are
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well known in the case of propagation in a stationary medium. Since the result of Moehring [3]
depends on the normal derivative of the acoustic energy flux vanishing on the walls of the duct, it
would appear to exclude dissipative walls. However, the classical result [1] concludes that
reciprocal relations still hold provided the duct walls have a locally reacting impedance model
(whether dissipative or not) where for harmonic disturbances acoustic particle velocity is
proportional to acoustic pressure. Reciprocity based on energy conservation is more restrictive
than necessary.

An appropriate definition of acoustic energy and enefgy flux also exists for propagation
in a compressible potential flow [4]. On this basis, Moehring 3] extended his observations on
properties of the scattering matrix to include non-uniform ducts with rigid walls and potential
mean flow with the result that the reciprocal properties also depend on flow reversal. Godin [5]
has studied extensively issues of acoustic energy, acoustic reciprocity, and flow reversal
theorems in a highly generalized sense directly from the field equations. He has not specifically
addressed the simpler case of propagation in non-uniform ducts with compressible irrotational
flow, citing Moehring [3] as having demonstrated reverse flow reciprocity in this case [6].

'Godin’s citations to the literature can be consulted for an extensive survey of the field.

Here the goal is to approach the acoustic reciprocity problem in a compressible potential
flow in non-uniform ducts directly from the field equations in much the same way as the classical
formulation in the case of a stationary medium [1]. Furthermore, it is intended to show that
reciprocity holds for a finite length dissipative lining imbedded in an otherwise rigid wall. A
foundation for such a formulation in the case of uniform flows was given by Flax [7,8] in
connection with unsteady lifting surface theory. The application to potential flows in non-
uniform ducts given here yields a reciprocity relationship (perhaps more appropriately referred to
as a flow reversal theorem [5]) which is in terms of acoustic potential and acoustic density
perturbations on an irrotational compressible mean flow. It also can be given entirely in terms of
acoustic potential perturbations. The reverse flow reciprocity formulation which is obtained does
not begin with an energy conservation law and leads to a form similar to Moehring [3]. This
investigation is not restricted to a duct with rigid walls. The reverse flow reciprocity theorem is

then used to establish reciprocal properties of the scattering matrix for propagation of acoustic

2
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modes in a non- uniform duct with acoustically absorbing walls.

In the present paper the theoretical frame work is established for the reciprocity (flow
reversal) relationship, and it is specialized for examining the reciprocal relations which exist
between duct modes propagating in compressible mean flow. In a companion paper [9], the
results derived here are substantiated by numerical experiments based on a finite element
simulation using a new implementation of the boundary condition introduced by the presence of

acoustic treatment, the subject of a second companion paper [10].
ACOUSTIC PROPAGATION IN A COMPRESSIBLE POTENTIAL FLOW

An extensive discussion of both linear and non-linear formulations for acoustic
propagation in potential flows has been given by Campos [11]. His work includes a number of
citations to previous work and is the basis for contributions directed mainly toward analytic or
semi-analytic solutions for propagation in ducts (see for example [12,13]). The investigation
reported here has been part of the development of numerical modeling methods for acoustic
‘propagation in non-uniform ducts and therefore the final form of the governing equations is
specialized for that purpose.

The acoustic field equations are obtained by the consideration of unsteady perturbations
on a steady compressible potential flow. Accuracy in calculation of both the steady and unsteady
flow fields is necessary for computational verification of the theoretical results obtained. The
starting point for the formulation of both the steady mean flow and the acoustic perturbation
consists of the mass and momentum equations and the energy equation in the form of the

isentropic equation of state:

ap -

LA 2 =0 1
= V(B 7) (n)
TN = -1vp ¥
ot P
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5 A\ Y
P _| P 3)
Py Py
p.,p,V are fluid properties pressure, density, and velocity, at this point in dimensional form.

p,, P, are reference values of pressure and density. It is assumed that the mean flow and

—

acoustic perturbations are irrotational and that a potential d exists such that ¥ = V. Acoustic
perturbations are assumed on the steady mean flow such that b = b +d,p=p *p and

p=p, +p The linearized continuity equation is

% V(0,90 + V) <0 @

The linearized momentum equation, for irrotational acoustic perturbations, is

p
o= (T ©)

This is used to replace p in equation (4) and the linearized equation of state,
p=c’p (6)
is used to produce an alternative form of the momentum equation in terms of acoustic pressure,
p=-0,(2v6v0) ™

Equation (7) is used to post-process the field solution for ® to obtain the acoustic pressure field.

The acoustic particle velocity and acoustic velocity potential are related according to

V=V (8)
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The perturbation process also produces the conservation equation for the steady flow

V- (p, V) =0 (9)

and the steady flow momentum equation in terms of the speed of sound

ct=1- (Yz’ b [V -V, - M 7] (10)

and in terms of the steady flow density

1

p, = 1 - LD v vo, - M iy

Equations (4) through (11) are now in non-dimensional form where ¢ is the acoustic potential,
¢ is the local mean flow (reference) potential, p is the acoustic density, p_is the local mean
flow density, and c_is the local speed of sound in the mean flow. All quantities are made non-
‘dimensional by using the density p_ and the speed of sound ¢_ at some point, in this case the
radius at the plane x = 0 . Stagnation conditions could also serve as the reference. A reference
length R is defined as some characteristic dimension at the plane x = 0 . In the case of a

circular duct the reference length is the duct radius at x = 0. The acoustic potential is non-

dimensional with respect to ¢_R, and the acoustic pressure with respect to pxcj. Lengths are

made non-dimensional with respect to R. Time is scaled with R/c_ . In the case of harmonic
time dependence this leads to the definition of non-dimensional frequency n_= wR/c_. wisthe
dimensional source frequency. M_ is the Mach number at the reference point.

Equation (9) is the field equation for the calculation of the compressible potential mean
flow. Equations (10) and (11) are subsidiary relations that can be used in an iterative solution
which at each stage uses a density field derived from the previous iteration step. V(br ,C . P, are

required data for the formulation of the acoustic problem.

n
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REVERSE FLOW RECIPROCITY PRINCIPLE

The application of a reciprocity relationship for acoustic propagation in potential flows in
non-uniform ducts has lagged behind the exploitation of the comparable results for propagation
in a quiescent medium, not because of the difficulty in posing the principle, but probably because
of the difficulty in producing solutions which could be used to test it. Numerical solutions for
duct propagation using the Finite Element Method (FEM) are now achievable [14] and provide
the capability of determining the complete acoustic field in a duct (and in the far field of a duct
of finite length) as well as the scattering matrix for a non-uniform duct inserted in an otherwise
uniform duct of infinite length. This provides opportunity for testing the reciprocity principle and
suggests the development of such a principle for benchmarking of FEM calculations.

The intent here is to approach the reciprocity principle independent of considerations of
energy conservation. A counterpart exists in the literature of unsteady lifting surface theory in the
Reverse Flow Theorem of Flax [7,8] . A reciprocity principle for acoustic propagation in non-
uniform potential flows in ducts can be obtained by an extension of the formulation of Flax.

Consider the volume Q shown in Figure 1, which is the interior of a nonuniform duct of

‘arbitrary cross section. In examples the duct will be assumed axisymmetric (circular or annular),
but the principle derived is independent of the duct cross section. The duct walls can be rigid or
locally reacting. The unit normal 7 is directed out of the volume at each surface. The source
plane §_is where the acoustic source is specified and the exit plane S, terminates the duct and
may have a reflection matrix specified. For computations the exit plane will be assumed non-
reflecting. A typical computational problem would seek to specify the acoustic field within the
duct and the scattering matrix at the source plane for incident acoustic modes. Equations (4) and
(5) specify the acoustic field within Q subject to appropriate boundary conditions on S, the
surface of Q.

Let e " be a harmonic solution for the acoustic velocity potential for the case of a
mean flow specified everwhere in the duct by its reference Mach number Mr =Vé  and with
specified boundary conditions. Let ¢2 ¢'™" be a second harmonic solution for exactly the same
duct with different source conditions, but with the flow reversed, —Mr = - V¢ . Itis important

to note that in reversed flow the reference density p, and reference speed of sound ¢, are
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unaltered. Because of equation (4), in the case of a harmonic source at non-dimensional

frequency 1, it follows that
[[[td,linp, +T-(p,90, + Vo,p)] - & [inp, + V:(p,VP, - VO,p)ld2 =0 (12)
Q
With application of the divergence theorem equation (12) is reconfigured to
[ [0, (0,70,% 6,01 - &, [(0,7, - T, 0,)]} 7S
s

_ M[{wbz.vqpl =V, Vo p, - in (,0, - ,p,)}dQ = 0 13)
The acoustic density in the two solutions is defined according to

p P |
P, = 5N, T VOTVO) gy = - ind, - V0 a9

r

'Equations (14) are used to eliminate the remaining volume integral in equation (12), leaving the
reciprocity principle in terms of acoustic density and potential in a form convenient for

subsequent development

[[(&,0(p,9%, = Vo,p))] - &,[(p,V, - Vo, p,)]}77dS = 0 (15a)
S

An alternate form, in terms of the acoustic pressure, obtained by using equation (7), is

P P
f[{(—pi -V V)P, Vb, + Vo p )] - @p—l £ VH V) [(p,Vd, -V, p )1} AdS =0
N r ’
(15b)

In establishing reciprocal relationships for the scattering matrix it is important in this
development that Equation (15a) or (15b) have contributions only on the source and exit planes,

S and S, . This requires that the integrand vanish on the duct walls. For a duct with rigid walls
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this occurs because V¢ A =0, Vd)l'r'i =0, and Vd)z-ﬁ = 0 on the walls. In the case

when mean flow is absent , Vd), vanishes and P, is constant, leading to
”{pz“1 -p, V,} 7AdS =0 (16)

For a locally reacting wall admittance in the absence of mean flow, acoustic pressure 18
proportional to particle velocity. This makes the integrand vanish on the walls of the duct, and
equation (16) has contributions only on the source and exit plénes. Reciprocal properties of the
scattering matrix are therefore valid in the absence of flow for normally reacting impedance
walls. This is in spite of the fact that acoustic power is not conserved.

When mean flow is present and the walls are normally reacting further examination is
required to establish that equation 15(a) has no contribution on the duct walls. Myers [15] has
shown that the boundary condition at a normally reacting acoustic lining which relates the
boundary displacement { to the component of the acoustic particle velocity normal to the

undisplaced surface is
\7¢-ﬁ:inrc+Mr-vc-cﬁ-(ﬁ-V)M, (17)

With Vd)r'ﬁ = 0 on the duct wall surfaces S, lined or unlined, and A7[r =V, the integral

of equation (152) on S becomes

1= [[te,&,lin g, + M ¢ - @ (HVIM]
~ (18)
~p b [ing - MV, + (A (AV)M]}dS

The following vector identities are introduced (with account taken of the special circumstances of

the present problem):

prd)x\;[r'vc = pAZf‘Vd)C - prCMr'VCb
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Vo M

il
<o

p M -V =Vp ¢IM

ﬁ-Mr =0

!

p $CA(A-VI)M, = A (V)P dIM
- Vx(Axp®(M) = Vop, O M~ A-(A9)p,bCM,

Equation (18) can then be reformulated as

I, = ff{ P,Cl[in,sz - Mr-vq)z] - prCZ[inrq)l + Mr.vq)z]}ds

S
w

o [ [ {7 TxCixp, 0,0 M) = AV (Axp, &, M)} dS
S

w

(19)
The case considered here is an admittance wall imbedded in an otherwise rigid wall. Therefore,
as shown in figure (2), acoustic treatment extends less than the full length of the duct. This 1s
physically realistic, and is also consistent with the type of reciprocity relation between duct
modal amplitudes which is sought. Following the development of Moehring [16], the last
integral can be written as a line integral on the boundary I' of the surface S by using Stokes’
Theorem. Since the surface S consists of the wall of the duct (in general of varying cross
section), I' Is chosen to consist of closed curves Fl and I‘2 circumscribed on the duct wall
outside of the region of the lining, and therfore where the duct wall is rigid. There is also a
portion of T'  which runs along the duct wall between I and I, to complete the
closed curve of Stokes’ Theorem, but this curve is traversed twice, once in each direction, and
has no net contribution. To make use of Stokes’ Theorem it is required that the acoustic field and

the wall displacement be continuous on S . Hence, since the acoustic treatment is of limited
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length imbedded in an otherwise rigid wall duct, the transition from rigid wall to admittance
wall, as well as the variation of admittance along the treated wall, must be continuous. If this

condition is met, Stokes’ Theorem can be cast in the form

[ [ (7-9x(ixp 6 H)ydS = [ (ixp, & M)-dl' + [ (xp, OTM )T (20)
oS, T, r,

The integral on the surface S vanishes if the line integrals vanish. On a hard wall the line
integrals vanish because the boundary displacement vanishes. This means that if the condition for

the use of Stokes’ Theorem is met, then the integral of equation (19) is

I - ff{ o, ¢, Lin,d, - M V9,1 - p C,Lind, + -9} dS 20)
3
With equation (7) this becomes

= [[{Cp -¢,p,}dS (21)
S
At a wall of admittance 4  there is a relation between pressure and wall velocity which is

frequency dependent and of the form
in ( =4p (22)

The integral [ vanishes and equation (14) has contributions only on the portion of the surface
area S which corresponds to duct cross sections beyond the impedance wall, on the surfaces
S, And S, . With appropriate restrictions on the impedance wall, the reciprocity principle is
therefore unchanged for hard and soft wall ducts.

The restriction on the impedance wall is interesting. If admittance is indeed discontinuous
along the wall, then{ has to be discontinuous. Moehring [16 ] has noted that for discontinuous

admittance variation there is no clear condition to be imposed on the acoustic field or wall
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displacement at the discontinuity. Rebel and Ronneberger [17 ] has shown that the condition of
admittance discontinuity and the assumption of potential flow at the wall (no boundary layer)
causes a problem with the underlying physics of the flow. What is known is that a numerical
procedure such as the FEM restricts the solution for acoustic potential to continuous functions,
and the lining displacement never appears in the final field equations and boundary condition.
Thus one suspects that the restriction to continuously varying admittance is not a critical issue in
numerical comparisons, but it may be in comparisons with experiment.

Equation (14) can also be written entirely in terms of acoustic potential

1 = = . pr —~ .
[[6,40,(V4, - <M M Vb)) - in, — M} 7dS
5 ¢, ¢,
p

r
2 rt2
r

}-idS =0 (23)

(9

- [[0,(p,(T0, - 9, M, ) in,

,.
S

‘where the area S is now understood to include only the source and exit planes S, and
S, .
APPLICATION TO A NON-UNIFORM DUCT

The discussion here is presented for a duct with a straight x axis, but is more
complicated only in the notation if the axis is not straight. Figure 2 shows a representative non-
uniform duct with cross section S(x) definedon 0 <x <L, S(0) =S5, S(L) = S, There 1s a
steady mean potential flow in the duct M(x,7), defined as

c

M(x,F) = —— M (x.F) =

) Vo (24)

1
c,(x,F) 7

Mr is a non-dimensional velocity based on the reference speed of sound ¢_. M (x,F)is the
local Mach number defined in the usual way and ¢(x,7) is the local (dimensional) speed of
sound. (x,7) denotes a point in a cross section at x in a coordinate system appropriate for the

11
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duct geometry. The corresponding reversed flow is - M . The non-dimensional frequency n

can also be defined locally (local speed of sound but with reference length R) according to
nr:____.:___—-ZCT] (25)

1 is a local non-dimensional frequency based on the local speed of sound. In terms of local

Mach number and non-dimensional frequency, equation (23) becomes

[[ o, &, (V6 -M(M-VY)] - ind )7 dS
Sy+S

L

- ff p & {[Vo, -M(M-Vb,)] + in .} 7dS =0

S+,

(26)

It is assumed that at the inflow end of the duct at x = 0 the steady mean flow is uniform on the
cross section with  M(x,7) = M,i, and at the outflow end x = L the steady mean flow 1s
uniform with M(x,7) = M Az Reference density p’o and prLand local non-dimensional
frequency n, and 1, are defined similarly. The assumption of uniform conditions implies that
the inflow and outflow planes are well removed from the non-uniform region of the duct. In
computational examples it is found that for ducts with circular or annular cross sections uniform
inlet and outlet ducts of length two duct radii ahead of and beyond the non-uniformity are
sufficient. At x = 0 the outward unit normal # = -i andat x = L the normalis 7 =i. With

these observations the reciprocity principle of equation (26) becomes
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8¢
p, [[[ &, ((1 - M) == = ing M, b,}.dS
SO
2 a¢2 ,
- proﬂ“’l{“ S M) iy My 6, S

o9
=p, [[ 0,101 - MD—~ - in, M, 0} dS
SL

5, _,
—p,LSffcbl{(l - M})—=2 - in M, $,} dS

CIRCULAR DUCT EXAMPLE

| In the regions of uniform flow at the ends of the duct at x = 0 and x = L acoustic
potential can be approximated by an N term eigenfunction expansion in terms of duct modes
(Figure 2). In the case of a circular duct the expansion can be expressed at x = 0 n vector-

matrix form for angular dependence e "im® a5

¢ (x,r,0) = {@m(r)ner;(x)ﬁa":}e Tim8 [@m(r)Me';(x)Ha’;}e im0 (28)

The derivative is

ik Ha";}e -im8(29)

Az (x,r,0) = [Cbm(r)] {a’;}e imb [@m(r)}

_ e (x)|| -ik’ e (x)
ox m x m

[CD (r)J isa 1x N row matrix of duct radial modes, the same for both right and left propagating

-ik, x
mn

modes. {e”: (x)| and {e”; (x)} are NxN diagonal matrices with typical elements e

[—ik;J and -ikx‘J are N x N diagonal matrices with typical elements -ik: : {a’;}
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and {a’;} are N x 1 vectors of modal amplitude coefficients for right (positive x) and left
(negative x) modes. A similar expansion with modal amplitudes {bm} and {b”:} applies at

¢ = L . The axial wave numbers are given in the nominal flow for modes which are cut on by

k:mn ]. J Z(Kmno]z
- M1 -(1 - MY —=— (30a)

and for modes which are cut off by

k* 2

* mn 1 2 Kmno

m =1 e —M:iJ(I—M)[ ] -1 (30b)
1 -

In reversed flow for cut on modes

k* 2
xmn 1- 2 Kmno
= Mﬂ:\ll—(l—M)[ ] (31a)

and for cut off modes

K 1 J [,.,,,]
= M=i | (1-M) -1 (31b)

The non-dimensional frequency 7 is based on the local speed of sound and the reference
radius. K O are eigenvalues determined from the uniform duct eigenproblem [18] in a uniform

duct with local radius possibly different than the reference radius. In the case of the circular duct
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they are determined from Jm/ (x_ o) =0,with J_ being the Bessel function. m is the angular
mode number and #, 1 < n < N, is the radial mode number. o is the ratio of the local duct
radius to the reference radius, ¢ = R /R. an is therefore non-dimensional frequency based on
local speed of sound and local duct radius. At x = 0 where the reference radius and ¢ are
defined, c =1land m =7 . At x = 0 the diagonal matrices [e":(O)J and te";(O)J
become identity matrices. At x =L le’; (L)} and te":(L)J can be absorbed into the
amplitude coefficients. The convention on the sign choice in equation (30) corresponding to
k; is that the positive sign is chosen if the radical is real and the minus sign is chosen if the
rad’;gal is imaginary. The opposite choices are made for k. k-~  then corresponds to waves
propagating in the positive x direction (except for the possil;ni'iity tha”;’l with Mach number negative
some propagating waves may appear not to propagate in the positive X direction due to
convection) and to cut-off modes decaying in the positive x direction. The opposite
interpretation applies for &

With these observation':,‘ deleting the implied dependence on the mode number m , and

taking the reversed flow solution to have angular dependence e im® it is possible to express the

‘solution ¢ and its counterpart reversed flow solution ¢, as
1 P 2

&, =[@]fa e + @la fe (32)
a;: _ [@}[—ikx*l}{a;}e -im [(D]{’ikx_l]{a{}e -im8 5%)

The corresponding reversed flow solution 1s

b, = [@Ha{}eime + [@Hai}e""e (34)
%(% = [(D][—lk;2 {az'}ei”'e + [@}[—ikx’zl{a;}eime (35)
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It is important to note that the eigenvalues and eigenfunctions are independent of angular
dependence e -im8 . ,im® The choice of angular dependence in the two solutions eliminates
the angular dependence in the integrals of equation (27). The physical implication is that of a
spinning mode which has the same vector sense with respect to the flow direction. In
calculations, scattering coefficients do not depend on the sign of m.

 In carrying out the integrals of equation (21), the notation
[[[e]'[o]ds - /] | (36)
SO

[[le][@]as = [/ ] (37)

is introduced. [JOJ and [JLJ are NxN diagonal matrices resulting from the orthogonality
of the duct eigenfunctions at x = 0 and x = L. Fora circular duct the eigenfunctions @ _ (r)
are Bessel functions of the first kind of order m . In numerical implementations it is convenient
to generate the Bessel functions, solve the related eigenproblem, and generate VoJ and [J Lj

using an FEM formulation.
With the eigenfunction expansions of equations (32)-(35) the integrals of equation (27)

can be written

0%
p, [f & {(1 - MO~ - imy M, b3S
SO

- p, L1 - M) ({a)} + (g YD1k, Tay) = =ik, Had)

- in M, ({a,}" + {4, 3, 1({a} * {a )]

o
o, [ [0, {(1 - M) + imy My b} S (38)
SO

X
=p, L(1- MH({a} + (a YD LIk Way) + ik, Kay )

+ inoMo({a;}T * {al_}T)[Jo]({az*} * {az—})]
(39)
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39
p, [[ 0, (1 - M) - in M, &,}dS
SL
= p, [(1 - M6} = (0 )DLik JEe) = [k b

- in, M, ({637 (6, DI I8+ {5 1)]
(40)

ox

8¢
p, [0, 1(1 - M=~ = im, M, &, }dS
SL

=p, [(1- MH({B} + {b[}r)[JL]([-ik;LZ]{b{} -tk by

- in M, ({537 + (5D 1(£8,} + {5 )]
(41)

The notation k: designates the axial wave number evaluated at x = 0 for the nominal flow
01
direction. k: corresponds to reversed flow. k: designates the axial wave number

02 Ll
evaluated at x = L for the nominal flow direction. k: corresponds to reversed flow.

L2

In equations (38)-(41) amplitude coefficients {a”} are associated with an eigenfunction
expansion at x = 0 and {b*} correspond to x = L . With the use of equations (30a) and
(30b), introduce the following definitions for the nominal flow direction for propagating modes

( kx real)

2
o = pl-i(1- Mz)kx*1 -inM] = —iprnJ 1-(1- MZ)[E%j (42)
2
@, = o [-i(1 - MMk - inM] = iprnJ 1-(1- MZ)(E%] (43)
17
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and for cut-off modes ( kx complex)

2 |

a’ =p, [-i(l - Mz)k,[1 - inM] = -p,n\J (1 -Mz)[%J -1 (44)
2

@, = p,[-i(1 - MYE - inM] - p,nJ (1- M%[E—f]) -1 (45)

Analogous definitions can be introduced in reversed flow using equations (31a) and (31b). For

example, for a propagating mode

2
a, =p [~i(l - Mz)kx*2 +inM] = —iprn\J 1-(1- Mz)[l;—%) (46)

It becomes apparent that the definitions do not change in reversed flow so the conclusion is made
that «”, = &', = «"and «, =« =a forboth propagating and cut-off modes.
‘Furthermore, it is apparent that o~ = - & and these are to be evaluated at x = 0 and x =1L

as required.

Equations (36)-(41) can be rewritten in the form

o
o, [ [, ((1 - M)—== - ing M, b, } dS
SO
= {a YUMo J{a} + {a ) 1]l J{a}

s {a e e} + {a) Y Ve (] {a )
(47)
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b
o, [[ &, (1 = M) == - iny M, &,} dS
SO

= {a Y[ J{a ) + {a} [ 1le ] {a,}

RS FAICINECR R U PAICINICN,

o '
p, [ [ &, ((1 = M)~ in, M, &,} dS
SL

= {5,V 00 J{b} + (b, Y [V, 2o J{b}

BUSHAIBICSERUNAEAICILY
AT
o, [[ &, 4CL = MD—== - in, M, b} dS
SL

U AT ER UL PAI TN

+ (b7 YT1J, e 1B} + (b} 1J, ][ {0, }

(48)

(49)

(50)

The diagonal matrices [ocio] and [o* ] are have elements defined by equations (42)-(46).

Elements o, are evaluated at x = 0 and o are evaluated at x = L and the distinction

L

19
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between nominal flow and reversed flow disappears. At x = L the modal amplitudes are bn‘
and b . Modal amplitudes an' and a  and bn’ and b are related by the acoustic

potential scattering matrix according to

a | a’
{b‘}_[s]{b'} (51

where the scattering matrix is defined as

[R] (7]

< (52)
[T] [R]

Contained in [S] are the usual reflection matrix [R] and transmission matrix [7'] for acoustic
modes incident at x = 0 and reflection and transmission matrices [R] and [T for modes .
incident at x = L. There will be a scattering matrix [S,] for nominal mean flow and a second
one [S,] for reversed flow. The relationship between [S] and [S,] can be obtained using the
.'reciprocity theorem.

When the integral evaluations of equations (47)-(50) are used in equation (27) there is

considerable simplification due to the fact that « = - oc(; = - and « = - ai = -
The diagonal matrices [«,] and [a ] are constructed by evaluating equation (42)- (45) at

x =0or x = L for each acoustic mode included in the acoustic potential expansions of
equations (32) or (35). [J,] [,] and [/, ] (o ] are diagonal and therefore equal to their

transpose. The result of the simplifications is

(a Y1, ) (o, 1€y} = (637 [J 1[0 1{B; ) =

{a] Y [J,) Lo, 1{a,} + {6, [ 1 [, 1{b} (53)
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Equation (53) can be written in partitioned form

a || o) a; || ) e]

by PAICAII TS b, EAICHY] RN I

Equation (54) is rewritten by introducing the definition of the scattering matrix from equation

(51) and by using the definition

(J,] [,]
= [J][e] (55)
[/, ][]
The result is
T T
a 9 a, a
(5,171 [e] - 8,17 1] ] (56)
b, b, b, b
Equation (56) reveals that
[V e] = [J1[«](S,] (57)
or
[JI[«][S,] = ( [J1{e]iS, )T (58)

Equations (57) and (58) show that a weighted version of the nominal flow acoustic potential

21

133



scattering matrix and similarly weighted version of the reversed flow acoustic potential scattering
matrix are transposes of one another. In terms of the acoustic potential reflection and

transmission coefficient matrices the result is

5
R, 11e,] = [F] [ [R,] (59)
4 3 60
(R[] (e,] = [/,] [, 1[R}] (60)
[TI]T[JL] [e,] = [J,] [e,] [fz] (61)
(62)

IRHPAICARIEATCAIES

The reciprocal relationships of equations (59)-(62) involve acoustic potential reflection and
‘transmission coefficient matrices, with diagonal elements representing reflection and
transmission coefficients in the incident modes (here referred to as direct reflection or
transmission) and off diagonal reflection and transmission coefficients from the incident mode to
another mode. Equations (59) and (60) show that direct acoustic potential reflection coefficients
are invariant in reversed flow. The transmission coefficient matrix pairs 7], [7,] and

[7,], [7,] are not reciprocally related but the pairs [T,],[7,] and [T,],[T,] are related
by equations (61) and (62). These results for acoustic potential reflection and transmission
coefficient matrices are more interesting than those obtained for acoustic pressure reflection and
transmission coefficient matrices in the absence of flow [2] because they identify a relationship
between reflection coefficient matrices in nominal and reversed flow which includes the
observation that the direct reflection coefficient (in the incident mode) is invariant to flow

direction.
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RECIPROCITY IN TERMS OF ACOUSTIC PRESSURE

The entire development to this point has been carried out in terms of acoustic potential
because the field equations (4) and (5) favor this formulation. Equation (7) provides a direct
relationship between acoustic pressure and acoustic potential which can be used to restructure the
reciprocity results in terms of acoustic pressure modal amplitudes. In terms of local non-
dimensional frequency and local Mach number in a uniform section of duct with uniform flow,

equation (7) can be rewritten as
. d
p = pe(ind ML )

With equation (63) a connection between acoustic potential modal amplitudes and acoustic
pressure modal amplitudes can be established. Consider an acoustic mode propagating in the_
uniform section with the axial wave number given by equations (30 a,b) or (31 a,b). By referring,
for example, to equation (33), the pressure amplitude can be found in terms of the potential

‘amplitude in nominal flow as

. (64)
* . kx— + 1 +
p= = -inpe, (1 -M—=) b= — &
N B
and in reversed flow by
- | (65)
p*, =-inp.c, (1 +M—1;—)¢*2 = —ﬁ— o5
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These relations between acoustic pressure modal coefficients and acoustic potential modal
coefficients are evaluated at x = 0 and x = L to produce transformations between acoustic

potential modal amplitudes {a *1, {b*} and acoustic pressure modal amplitudes

{c*}, {d"}:

a; B(; ¢ e

(= 1Y, =081 . (66)
b, BL dl d,
a, B(; cf : c1+

(= Ay =0B7]Y - (67)
b, BL_ d1 d,
a. B c. c.

R AL LGl 8 J: 1 (68)
b d d

2 BL 2 2
a’ B c c,

2_ — 0 ) 2— - [B:] 2- (69)
b d d

2 E'L_ 2 2

The 2N x 2N diagonal matrices [B*] and [B°] have coefficients defined by equations (64)
and (65) for each mode, evaluated at the appropriate end of the duct, arranged along the
diagonal. Equations (66)-(69) and equation (51) provide a relationship between the scattering

matrices for acoustic potential and the scattering matrices for acoustic pressure:

[S,] = [B°1"[S,1(B] (70)
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[S,] = [B*]"'[S,1[B"] (71)

[S,1,[S,] are the scattering matrices in nominal and reversed flow for acoustic potential modal
amplitudes and [571] , [LS—'Z] are the scattering matrices for acoustic pressure modal amplitudes.
Equations (66)-(71) and equation (56) are used to arrive at the reciprocity relationship for

acoustic pressure modal amplitudes in terms of the nominal flow and reverse flow acoustic

pressure scattering matrices:
(B[S, [/1[«] [B] = [B*] /1181 (B7]" (72)

The four reciprocal relationships are:

(817 (R, 71,1 [, 1[B;1 = [B; 11,1 [ty ] [R, 1 B]™ (73)
(8,1 (R, 1T 17,1 (e, 1 [B;] = [B; 10,1 [, 1 [R,1(B;1" (74)
(B 1 (T 19,1 [, 108, = [By1 14,1 ey 1 (T3] 1B, 17" (75)
(817 [ 17 1,1 [, ) (B, = (8,10, e, 17,1 B, 17 (76)

The reciprocal relationships of equations (73)-(76) involve acoustic pressure reflection and
transmission coefficient matrices, with diagonal elements representing reflection and
transmission coefficients in the incident modes (here referred to as direct reflection or
transmission) and off diagonal reflection and transmission coefficients from the incident mode to
another mode. From equations (73) and (74) it is seen that in terms of acoustic pressure modal
amplitudes direct reflection and transmission coefficients in nominal flow and reversed flow are
not invariant but are simply related. Transmission coefficient matrix pairs [T—l] , [T;] and

[7.], [T,] are not directly related but pairs [7}], [7,] and [7,], [T;] are related by
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equations (75) and (76). The result in the case of a plane wave incident is particularly simple and
will be given in the following section.

Because of the way in which equations (73)-(76) were developed, the weighted, or scaled,
matrices on the right and left hand sides are equivalent to their counterparts in equations (59)-
(62). This convenient definition of scaled pressure reflection and transmission matrices makes

them numerically equal to their scaled acoustic potential counterparts.

ACOUSTIC POWER CONSIDERATIONS

Reciprocal relations between scattering coefficients in uniform duct sections bounding a
non-unifom section obtained above are of theoretical interest and are also a useful tool for
benchmarking numerical models of duct propagation. Also of interest in this respect are acoustic
power transmission and reflection characteristics of the nonuniform section. For a rigid wall duct
acoustic power conservation provides a valuable benchmark and for an acoustically treated duct
acoustic power transmission calculations are required to assess performance. In this section

"acoustic power formulations appropriate for the propagation model are obtained.

There are two commonly used types of acoustic intensity formulations in moving media
[19]. The Type I definition due to Morfey [4] is valid as part of a conservation law in non-
uniform ducts for compressible potential flow, while the Type II formulation due to Ryshov and
Shefter [20] is valid as part of a conservation law only for uniform flow, and therefore only for
uniform ducts. In the following development the Type I definition of acoustic intensity is used in
the uniform flow sections on either end of the nonuniformity to obtain acoustic power
expressions.

The Type I acoustic intensity is defined in non-dimensional form as the time average

acoustic energy flux

Mp*+ M(M-V)p (77)

= ={p¥ + p,c (M) +
P.C. P.C. P.C,
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where M is the local Mach number of the flow and p ,c, are local values of the non-
dimensional mean flow density and speed of sound in the mean flow. For propagation in uniform

flow in the direction of the x axis equation (77) simplifies to the scalar form

3

P.C. rr

= <(1 + M¥)pu + p,c, Mu® + Mp2> (78)

Acoustic power is obtained by integration over a cross section. For the circular cross section

1

prcr

P

3
4,0

=ff<(1+M2)pu+prchu2+ Mp2>dS (79)
S

A modal expansion as given by equations (32) and (33) is used to obtain an acoustic power in
terms of acoustic potential modal amplitudes. Because of orthogonality of the duct
eigenfunctions and because the duct eigenfunctions are the same for propagation with and against
‘the flow, the evaluation of acoustic power is considerably simplified. The result can be cast in

the form of a “power matrix”

T e -+ T
P a”’ P P |la a”’ a’
—__—.—3 ) { o } P+‘ P__ { a— }: { - } [P]{ ‘ } (80)
4,.P.¢. a wn t o a a

where, for example, a " denotes the complex conjugate of a . The power matrix [P]is
structured in diagonal blocks due to orthogonality of the acoustic eigenfunctions. The diagonal
blocks consist of power coefficients for positive and negative acoustic modes. The off-diagonal
blocks represent power due to interaction of positive and negative modes with the same

eigenfunction. If the amplitude coefficients are for acoustic potential, the power coefficients are
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P =-P" =0
(83)
There is no interaction power for cut on modes.
For cut off modes
k™ =k , k =k’
X x X x
k.’ k- k= k= ok k=
* + =2 _* , % yF =2 X
n n n n n n
kOk 2 M kR 2 M
o = = —_— +—_
noon 1-M» om0 1 - M?
( ) ( ) (84)
and the acoustic power transmission coefficients are
P = P =0
P =-P"=LtnlpcJ J(l -y EZy -1
nn nn 2 r r nn Kn
(85)

For cut off there is only power related to the interaction of positive and negative modes. It is noted
that the acoustic power coefficients based on acoustic potential amplitude are invariant to the

direction of the flow.
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In the case the amplitude coefficients are for acoustic pressure, the power coefficients can

be obtained by making use of equation (64) which relates pressure amplitudes to acoustic potential

amplitudes. The results are

k; kx’
J £
Pn'n' - nn (1 + MZ) n + n
4p_c, k k
1 - M2 1 - M=
n n
kx" kx'
- nn ‘(1 + MZ) N " il
" 4pec, k- k-
1 - M2 1 - M=
n n
k;’ kx-
7 =~
pre i e — T
p,c, k’ k
1 - M2 1 -M-=Z
il n

31

kx’ kx’
c oM n n c2M
PRz 5
| - M= | - M=
n n
(862)
k- k;
oM n n S2M}
ko k-
| - M= | - M=%
n n
(86b)
k: k;
soM| — 1 1| ~2M
k k
| - M= | - M=
M 1
(86¢)
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kX kx* kx- kx’
Son 2 n k) n n
P = (1 + M?) + M M
mo d4pc k
1 -MZ 1 -MZ 1 - M2 1 - M=
1 n N
(86d)

The conclusions drawn from this formulation in terms of acoustic pressure amplitude coefficients
are similar to those obtained from the acoustic potential form. The acoustic power coefficients for

the case of cut on modes are

pr-_L g ! 1 - (1 - M) ESy
an Zprcrm k+ Kn
(1-M=ZY
n
Pra-t : \J1—(1—M2)(£?)2
nn 2prcr nn - Kn
(1-MZ)
n
PT =-P" =0

(87)

For modes which are cut off, the acoustic power coefficients are

P =P, =0
P, Ll -ayEEy -1
P, ko KN
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(88)

The power coefficients in terms of acoustic pressure amplitudes depend on the direction of the mean
flow, but conclusions drawn about the vanishing or non-vanishing of the power coefficients for cut
on and cut off modes are the same as in the case of acoustic potential amplitudes.

The common result of both formulations is that elements of the diagonal blocks of the power
matrix vanish for cut off modes and elements of the off-diagonal blocks vanish for cut on modes.
For cut on modes there is no power contribution due to interaction of positive and negative
propagating modes. For cut off modes there is no power contribution due to individual positive and

‘negative modes but there is power due to the interaction of positive and negative modes.

Acoustic power at x = 0 is written in terms of the power matrix and the amplitude

coefficients (either potential or pressure formulation)

m, = {a”" )7 (P, Ma'y = {a"}TIP, 1{a’}

+ {a'_}T[P,;,:O] {a’} + {a"}T[P,,‘,,'O] {a’} (89)

With the source considered to be at x = 0 , the reflection matrix can be used to replace reflected

modal amplitudes to yield
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I, ={a "} [P, 1{a’} +{a"}' [P, 1[R,]{a")

Aa VIR T IR Ma'y + (@ YTIRT (P, 1R Ha)

(50)
This result requires interpretation. If only cut on modes are included among the incident modes a”
then there is no interaction power and the net power is accounted for by the sum of incident power
and reflected power, represented by the first and last terms. If among the incident modes there are
ones which are cut off, then there is an additional component of net power due to interaction of
incident and reflected cutoff modes, represented by the middle two terms. In this case the net power

is not conveniently partitioned between incident and reflected contributions.
Acoustic power at the exit end of the duct, x = L, is similarly written in terms of modal

amplitudes

O, ={6""}[P, 1{b7}
L
o1)
The termination is assumed to be reflection free, so only right modes are present. The modal

amplitudes are related to the source modal amplitudes via the transmission matrix. This yields.

0, = {a" YT [T) (P, 1T, 1{a’}
(92)

The form of equations (89)-(92) is the same in direct or reverse flow, however for multi-modal
propagation no simple relation between acoustic power in nominal and reversed flow appears to
exist, nor is there a simple relation when the source location is reversed. As will be shown in a
companion paper, there are simple relationships for power under flow reversal and source reversal

for a one dimensional model of propagation valid at low frequencies.
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For arigid wall duct energy conservation requires that II = II . Foran acoustically treated

duct a metric for performance of the lining is the transmission loss defined by

HL
TL = 20log,, 7 (93)
0

The presence of possible mode interaction power somewhat complicates the traditional definition
of transmission loss, and there could also be an argument for replacing Ho with only the first term

in equation (90), this being the incident power.

CONCLUSION

A reverse flow theorem for acoustic propagation in compressible potential flow has been
obtained directly from the field equations without recourse to energy conservation arguments. A
reciprocity theorem for the scattering matrix for propagation of acoustic modes in a duct with either
hard walls, or a section of locally reacting absorbing wall imbedded in an otherwise hard wall,

“follows. It is found that for a source at a specific end of the duct, suitably scaled reflection matrices
in direct and reverse flow have a reciprocal relationship. Scaled transmission matrices obtained for
direct flow and reversed flow with simultaneous switching of source location from one end to the
other also have a reciprocal relationship.

The approach presented here is an alternative to the approach of Moehring [3,16], with the
distinction that no energy conservation condition is used. It has been exploited to provide explicit
reciprocal relations which are of theoretical interest, but which also have the more pragmatic
significance of providing a convenient means for benchmarking large scale propagation codes such
as those used in this investigation.

Numerical verification of the reciprocal relationships is the subject of a companion paper.
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RECIPROCITY AND ACOUSTIC POWER IN ONE DIMENSIONAL
COMPRESSIBLE POTENTIAL FLOWS
Walter Eversman
Mechanical and Aerospace Engineering
and Engineering Mechanics
University of Missouri-Rolla

Rolla, MO 65401

ABSTRACT

A reverse flow theorem for one dimensional acoustic propagation in compressible
potential flow has been obtained directly from the field equations without recourse to energy
conservation arguments. Reciprocity relationships for the scattering coefficients for propagation
are derived. It is found that for a source at a specific end of the duct, suitably scaled reflection
coefficients in direct and reverse flow have a reciprocal relationship. Scaled transmission
"coefficients obtained for direct flow and reversed flow with simultaneous switching of source
location from one end to the other also have a reciprocal relationship. Reciprocal relations and
power conservation arguments are used to show that scaled power reflection and transmission
coefficients are invariant to flow reversal and switching of source location from one end of the
duct to the other. Numerical verification of the reciprocal relationships is given in a companion

paper in which multiple mode propagation and one dimensional propagation are considered

INTRODUCTION

In a companion paper [1] an acoustic reciprocity theorem in a compressible potential
flow in non-uniform ducts has been obtained directly from the field equations. It was shown that
reciprocity holds for ducts with rigid walls and for ducts with a finite length dissipative lining
imbedded in an otherwise rigid wall. In the present investigation the methodology of [1]is
applied to the simpler case of one dimensional propagation, valid for low frequencies, that 1S

large wave length to geometric cross section dimension ratio. The principal simplification is that

1
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acoustic treatment is no longer a possibility within the acoustic formulation. The energy
formulation of Moehring [2,3] then becomes a straight forward option because dissipative linings
and cut-off modes do not need to be considered. However, here the approach of [1] based directly
on the field equations is used .

Aside from finding a reciprocity relationship, a goal here is to expand upon an invariance
property for acoustic power transmission in converging-diverging ducts found by Davis [4]. This
turns out to be a result of reciprocity and energy conservation.

In another companion paper [5], the reciprocity relations found in [1] and in the present

paper are substantiated by numerical experiments based on a finite element simulation.

RECIPROCITY IN ONE-DIMENSIONAL FLOW

In some cases it is possible to use a one-dimensional approximation for steady flow and
acoustic perturbations. A reverse flow reciprocity relationship can be obtained in this case using
the method of [1]. Figure 1 shows the duct under consideration, which is in fact three

"dimensional, but it is assumed that the large wave length limit exists so that acoustic propagation
s one dimensional at each cross section. Furthermore, the duct shape is restricted so that the
mean flow at a cross section can also be treated as one dimensional. The cross sectional shape of
the duct is not a consideration in this one dimensional approximation. The one-dimensional

acoustic continuity equation is

3¢ o,

ap
AP (04 cp4—")=0 1
5 VP AG A M

where 4 is the local cross sectional area of the duct. The one-dimensional acoustic momentum

equation 1is

Y
p = 2z (ind - 152 @
¢ X

S
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or

o

p = o, (ind+ M=) (3)
x
The steady flow is obtained from
0 ad '
Z(p0A-—Y=0 4
ox (P, ox @

and the relations between mean flow velocity and mean flow potential and acoustic particle

velocity and acoustic potential are

d
M - i (5)
ax
_ 3
YT (©)

The acoustic relationship between pressure and density is
p=c'p ™

Mean flow speed of sound is determined by

ep=1- o Divp v - 4] ®

and the mean flow density is
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o, =11 - D wp v -MH" ©

Equations (1) and (9) are non-dimensional using the density p_ and the speed of sound c¢_ at
some point, in this case the plane x = 0 . Stagnation conditions could also serve as the
reference. A reference length R is a (hypothetical) radius corresponding to a (circular) source

“plane” at x = 0, the reference cross sectional area. Acoustic potential is non-dimensional with

respect to ¢_R, and the acoustic pressure with respect to pmcj. Lengths are made non-

dimensional with respect to R. Time is scaled with R/c_ . In the case of harmonic time
dependence this leads to the definition of non-dimensional frequency m_= wR/c_. wis the
dimensional source frequency. M_ is the Mach number at the reference point. With this
convention, the reference non-dimensional frequency 7 _and the local non-dimensional
frequency 7 are defined as in [1] where the restriction of one dimensional propagation Is not
invoked. Non-dimensionalization described here differs from the usual one dimensional ‘
development in which some characteristic duct length is generally used as a reference length. The
convention used here makes everything consistent with [1], in particular the non-dimensional
frequency n .

Consider the duct shown in Figure 2, which is locally of arbitrary cross section, and is
terminated on each end by a section of uniform duct, of length sufficient to assure uniform mean
flow and propagation in terms of acoustic modes. The source plane x = 0 is where the acoustic
source is specified and the exit plane x = L terminates the duct. For computations the exit
plane will be assumed non-reflecting. In general, a typical computational problem would seek to
specify the acoustic field within the duct and the scattering matrix at the source plane for incident
acoustic modes. Figure 2, originally presented in support of the discussion in [1], can be used
here to highlight the one dimensional approximation. It is assumed that the mean flow 1s
everywhere described in terms of the axial coordinate x so that in the nonuniform section
M(x,r) = M(x). Acoustic propagation is assumed to also depend only on the axial coordinate,
so that it is locally planar. The duct walls do not provide a boundary condition in the one-

dimensional approximation so that the unit normal # there plays no role. The unit normal on the
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terminating planes is axially directed. Equations (1) through (9) specify the acoustic field in the
duct of Figure 2 subject to the restrictions noted.

Let & e M be a harmonic solution for the acoustic velocity potential for the case of a
mean flow specified everywhere in the duct by its reference Mach number Mr =Vé_ and with
specified boundary conditions. Let ¢, e “* be a second harmonic solution for exactly the same
duct with different source conditions, but with the flow reversed, —AZ/r = - V¢,~ It is important
to note that in reversed flow the reference density p_and reference speed of sound ¢ _ are
unaltered. Because of equation (1), in the case of a harmonic source at non-dimensional

frequency n , it follows that

[(&,lindp, +V:(p,AVO, + M Ap)] - b lindp, « T(pATE, - MAp;)]}dx =0
(10)

Here, for ease of notation, and for a degree of similarity with 1], the gradient operator is used to

denote

vV=_¢ (11)

d
ox *
and

M =Meé (12)
with €_the unit vector in the x direction. With application integration by parts, which is
equivalent to the divergence theorem in [1], and by using equation (2) to partially replace p,
and p, , and to subsequently eliminate the remaining integral on x , equation (12) is reduced

to

od ad
[b,(p, A==+ MAp) - $,(pA—" - MAp) ;=0 (13)
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When this is written entirely in terms of acoustic potential the result is

2 b, 2 ob, L
[Ap {$,[(1 - M)—— - inM$ ] - ¢ [(1 - MT)—= +inM,]} J; =0 (14)
ox ox

In [1], eigenfunction expansions are used to define the acoustic potential field in the uniform
flow regions at x =0 and x = L. This is still appropriate, with the simplification that only the
plane waves propagate, and no analysis is required to determine the modes and wave numbers.

There is one “mode” propagating in each direction in the uniform duct sections, so that
there is only a superposition of a right and left wave, given for example here for the nominal

flow solutionat x = 0 in the form [1]

¢, =a +a (15)
ob, e B
Fx—:(_lkxl)al +(~lkx1)a1 (16)
The axial wave numbers are
ki:
W) IS Sy VS a7
nJ), 1-M
k:i:
S I SR VIR (18)
T] 2 1"M2

The superscript choice + corresponds to right and left waves. 1 and M represent local values
of non-dimensional frequency and Mach number determined by the local speed of sound, with

n still based on the reference length. The operator arising in equation (14)

6
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d .
L(o) =(1- M) —inMp = g (19)
introduces the parameters o” and o corresponding to right and left waves, for example at

x =0,

o = p[-i(L- MYk -inM] = -ipn (20)

o =p,[-i(1 - Mk - inM] = ipn (21)

Similar expressions exist for aj , in reversed flow. It is noted that a; = ocl' = ¢ and

= T . o is evaluated at the ends x = 0 and x = L as required.

With these definitions, equation (14) can be rearranged in a matrix form [1],

a AO o, az+ a, 4o, al+
= (22)
b/ Ape || b, b, Apo 11 b]

Modal amplitudes an’ and a_ and bn+ and b~ , acoustic potential wave amplitudes at

x =0and x =L , are related by the acoustic potential scattering matrix according to

a { _ a’
)]

where the scattering matrix is defined as

3

(8] = (24)

N X
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R and T are the reflection and transmission coefficients for a source at x = 0 witha
reflection free terminationat x = L. R and T are reflection and transmission coefficients
forasource at x = L and reflection free at x = 0. There will be a scattering matrix [S, ] for
nominal mean flow and a second one [S,] for reversed flow. Equations (23) and (24) can be

used in equation (22) to obtain

al, T a, az* T g
[S,17 (4] [«] = [S,17[4] [«] (25)
bl_ bz' bz' bl'
where the definition
Ao“o
= [4][«] (26)
4,0

is introduced. The scattering matrices for nominal and reversed flow are [, ] and [S,]. The

implications of equation (26) are summarized by the reciprocity relations

(15,17 141[e]) = [4][a]S,] @7
and

[A1[e](S,] = ([4][el(s,D" (28)

Equation (27) and (28) are used to establish the following relationships for the acoustic

potential reflection and transmission coefficients:

(29)
(30)

X
n N
o
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T A, =T A 31)
T4, =T,A0 (32)

By using the definitions of «; and @ Defined by equations (20) and (21) evaluated at x = 0

and x = L , equations (31) and (32) are written

4 pr c pr o
T, = A—" =l 20T (33)
L pr0 cro prL :
Ao pr Cr pr : ~
L=g5el5 | b (34)
L pro cro prL

Equations (29 ) and (30) produce the interesting result that the acoustic potential reflection
coefficients, at the left end and at the right end are invariant to flow direction. No reciprocal
relationships link the left to right transmission coefficients T, and T, orthe right to left
‘transmission coefficients T’l and Tz in nominal flow and reversed flow. Equation (33)
links the left to right transmission coefficient T in nominal flow to the right to left
transmission coefficient 7. , In reversed flow. Equation (34) links the left to right transmission
coefficient in reversed flow T, to the right to left transmission coefficient T | in nominal flow.
The reciprocal results of equations (29 )-(32) are for acoustic potential modal amplitudes.
In the case of acoustic pressure modal amplitudes a transition to acoustic potential modal
amplitudes is made through equation (3). The transformations from acoustic potential to acoustic

pressure for right and left waves in nomnal and reversed flow are

& =Bp . &, =B (35)

o, =B . 0, =Bp (36)

160



where

. 1 +M - 1-M
B = — ; B~ =— (37)
-inp c, -inp,c,

Mach number and non-dimensional frequency are based on the local speed of sound. Non-
dimensional frequency is still based on the reference length. Non-dimensional density and non-
dimensional speed of sound are evaluated locally.

Equations (35) and (36) are used to introduce préssure modal amplitudes in equation (22).

The scattering matrix is now in terms of pressure scattering coefficients

=3l
~3l

[S] = (38)

~l
A

After following the same steps leading to equations (29)-(32), reciprocity relations for acoustic

pressure scattering coefficients are found to be

— B, _— P (=M
R Ao —>=Rd o — or R =—— &, (39)
B 0 (1 - M)
—_ B - ﬁ- - (1 - M )2 -
1ALOLL—_—L =R A4 0o —L— or R = ok 5 R, (40)
L L (1+M)
o B = B* — Apr Cr (1+M)27
A% —L" =T,4,q, .0 or I = _E'J'J——i? T, (41)
0 BL AL pr cr (1 +ML)
N
10
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- B-O o ﬁ—L — AO pru cru (1 - M0)2 =
fda —2=Taa—~ o T=L 5T (42)
B L B L L prn Cr“ (1 —ML)

Equations (39)-(42) are written both implicitly in terms of coefficients defined above and
explicitly in terms of local area and flow conditions. The mach number ic for the nominal flow.

Pressure reflection coefficients are not invariant in reversed flow but are reciprocally
related as given by equations (39 ) and (40). No reciprocal rélationships link the left to right
transmission coefficients 7, and T, or the right to left transmission coefficients TTI and
7 in nominal flow and reversed flow. Equation (41) links the left to right transmission

2
coefficient Tl in nominal flow to the right to left transmission coefficient T , In reversed flow.

Equation (42) links the left to right transmission coefficient in reversed flow T, to the right to

left transmission coefficient i‘i in nominal flow.
ACOUSTIC POWER CONSIDERATIONS

In the case of one dimensional propagation, additional results can be obtained by the
consideration of acoustic power. The definition of acoustic intensity due to Morfey [6] is valid as
part of a conservation law in non-uniform ducts for compressible potential flow. This definition
of acoustic intensity is used in the uniform flow sections on either end of the nonuniformity to
obtain acoustic power expressions.

For propagation in uniform flow the Morfey intensity formulation simplifies to the scalar

form

L . (1 + MY pu+pc Mu®+ Mp? (44)

3
p.c. P.<,

Acoustic power is obtained by integration over a cross section, to yield
11
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P

3
Aref poﬂ C“

= [[{(1+Mpu+pe Mu? v — Mp* |dS (45)
s

rr
A modal expansion as given by equations (26) and (27) is used to obtain an acoustic power in

terms of acoustic potential modal amplitudes. The result is

P . . .

—  =g" P a +a P a (46)
Arefpwcj

1 1

where, for example, a " denotes the complex conjugate of a . Power can be represented in
terms of acoustic potential amplitudes as in equation (46) in uniform duct sections at x = 0 and
x = L. The power coefficients P 1*1* and P~ areone dimensional analogs of power matrices
introduced in [1]. No acoustic power is attributed to the interaction of acoustic modes because
there are no cut-off modes in this one dimensional model. The power coefficients can be easily

obtained by using the results for the plane wave mode from the general expressions of [1],

- 1
P, €, My 4, ’ Py =505 Ny 4, (47)
n n n n

Energy conservation arguments lead to the conclusion that O +1II ,=I . Thisis
inc ref trans
the traditional result, simplified from the result of [1] because of the absence of interaction power

associated with cut-off modes. Incident power at x = 0 is given by

O =a " R'P R a’
inc 1 110 1

Reflected power in nominal and reversed flow at x = 0 is given by

L, ,=a R PuORla ; 0, ,=a R2P110R2a

(48)
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Transmitted power in nominal and reversed flow x = L is given by

O =a TP Ta : I =a"T2'P**Ta‘

trans 1 11 L 1 trans 11 [ 2

(43)

Subscripts on the power coefficients denote the uniform section in which they are evaluated.
From equation (29) R, = R, , that is, the acoustic potential reflection coefficient is invariant

to flow direction, asis P . Therefore, the power reflection coefficient defined by either

R'P, R, R'P, R,
2 2
R =— " =|RP o R =-—1"=|R| (49)
Ty P“ 1 Ty P“ 2
n n

The power reflection coefficient is invariant to flow direction, R =R_.1It is concluded that the
e ]

power transmission coefficient are also invariant to flow direction, T = T_ . A similar
8 8

development based on equation (30) would show that En = ﬁﬁ and therefore that fn =T g
9 ] e 0
It is now possible to connect the power transmission coefficients when the source 1s
moved from one end of the duct to the other. For a source at x = 0 the power transmission

coefficient (the ratio of transmitted to incident power) is in nominal flow

? (50)

For a source at x = L in reverse flow the power transmission coefficient is defined for right to

left power according to

I A
N 271 . LA s
T = n = TR o= = 51
< P |7, | [ | (51)
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Equations (50) and (51) are deduced by using the definitions of incident and transmitted power
appropriately evaluated at x = 0 or x = L. The reciprocal relationship of equation (31) is used

to replace f’z in equation (51) yielding the result

-~ pr cr AL
T =~ =T (52)
Ty p ¢ A !

r r
n v

o

It has thus been shown that 7~ = T . Itis therefore concluded that 7 =T = T
T[B Tl'e Tte T[B Tte

thence from power conservation arguments that R = R_ =‘R~Tt = Eﬁ . This completes the
] e 8 [}

interesting result that for the one dimensional model power reflection and transmission

=7 and
Tg

coefficients are invariant to flow reversal and switching of the source location.

The result that T"e = T"e states that the transmission coefficient for the nominal flow
direction is the same from either end of the duct. This result contains the invariance theorem of
Davis [4], but also admits a generalization. Davis found that for a converging-diverging non-
uniformity in an otherwise uniform duct, for equal pressure amplitude input at the upstream and
downstream ends of the duct, the transmitted power is related by

+ 2
(1 +M) (53)

S

0,
o, (1-My
Here Hl is the transmitted power at the downstream end due to a source at the upstream end
and I | isthe transmitted power at the upstream end due to a source at the downstream end,
both in the nominal flow. Because the result of Davis is for a converging diverging duct, with
both ends of the same area, M0 = ML =M.

By using equations (46) and (47), which define acoustic power in terms of acoustic
potential amplitudes, and by modifying them using equations (3 5)-(37) to relate acoustic pressure

amplitude to acoustic potential amplitude, the incident power at x = 0 is

1, .o 4 2
I (x=0)= Elp0 | e (1 +M) (54)

ror
non

Similarly, for an acoustic pressure input at x = L , the incident power there is
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inc

A
M, (= 2) = 515, 1 (1 (55)

r.r
u v

po* and p,  are pressure mode amplitudes incident attheends x =0 and x = L.
Superscripts + and - reinforce the idea thatat x = 0 the incident mode is a right running wave
andat x = L the incident mode is a left running wave. The tilde ( ~ ) reminds that the source is
attheend x = L. By using the fact that the transmitted power in each case is the product of the

incident power and the appropriate power transmission coefficient, which is the same for either

~

case( T =T, ), and that the incident modal pressure amplitudes are the same for etther
C] ]

source ( |p0*\ =1p, 1), it follows that

I

frans

il

trans

P, ¢, (1+ M)
2
prﬂ Crn (1 - ML)

AO
- (56)
AL

"Equation (56) contains Davis’ result [4] in the case of a converging diverging duct when the duct
area, flow density, speed of sound and Mach number are the same at both ends. Other results are
possible involving acoustic potential and acoustic pressure amplitudes from the core result that

the power transmission coefficients are invariant.

CONCLUSION

A reverse flow theorem for acoustic propagation in one dimensional compressible
potential flow has been obtained directly from the field equations without recourse to energy
conservation arguments. A reciprocity theorem for the scattering coefficients for propagation of
acoustic modes has been obtained. Reciprocal relations and power conservation arguments are
used to show that scaled power reflection and transmission coefficients are invariant to flow
reversal and switching of source location from one end of the duct to the other.

Numerical verification of the reciprocal relationships has been made using a finite

element model for duct propagation, and is reported in a companion paper (5]
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NUMERICAL EXPERIMENTS ON ACOUSTIC RECIPROCITY
IN COMPRESSIBLE POTENTIAL FLOWS
Walter Eversman
Mechanical and Aerospace Engineering
and Engineering Mechanics
University of Missouri-Rolla
Rolla, MO 65401
ABSTRACT
A reciprocity theorem for the scattering matrix for propagation of acoustic modes in a

duct with acoustically hard walls or with acoustically absorbing walls has been given in a
companion publication. It was found that for a source at a specified end of the duct, suitably
scaled reflection matrices in direct and reverse flow have a reciprocal relationship. Scaled
transmission matrices obtained for direct flow and reversed flow with simultaneous switching of
source location from one end to the other also have a reciprocal relationship. A reverse flow
theorem for the equivalent one dimensional propagation model, which is a good approximation
to the three dimensional model at low frequencies, was also obtained. In this case, using
reciprocity and acoustic power conservation arguments it is additionally found that the acoustic
power transmission coefficient is the same for a source at either end of the duct for a given flow
direction. This result leads to an invariance theorem which relates acoustic power propagated due
to sources of equal pressure amplitude at the two ends of the duct. Numerical verification of
these reciprocal relationships is given here for propagation in axially symmetric (circular and
annular) ducts with multi-modal propagation and at low frequencies when a one dimensional

model is appropriate.

INTRODUCTION

In two companion papers [1,2], a reverse flow reciprocity theorem has been developed for
acoustic propagation in non-uniform ducts carrying compressible mean flow. In [1] the general
case of multi-mode propagation is considered and reciprocity is shown for ducts with either rigid

walls or with walls which include a normally reacting, dissipative section. For a source at one
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end of the duct, scaled reflection matrices in direct and reverse flow have a reciprocal
relationship. Scaled transmission matrices obtained for direct flow and reversed flow with
simultaneous switching of source location from one end to the other also have a reciprocal
relationship. In [2] reverse flow reciprocity is shown for the long wave length approximation
when a one dimensional model is applicable. In this case acoustic treatment is not part of the
model. Results similar to the multi-modal case are established for reciprocal relationships for
reflection and transmission coefficients. Additional results which are part of a general power
transmission invariance principal are also found as a result of reciprocity and energy
conservation. This invariance principal contains as a special case a result found by Davis [3].

The reverse flow reciprocity theorem is developed directly from an integral relationship
based on the acoustic field equations, using an approach similar to that used in (4] in the case of
propagation in a non-uniform duct in the absence of flow. In particular, the development does not
begin with an energy principle. This is in distinction to the approach of Moehring [5,6]. The
major complication which arises in the present formulation is the case when a portion of the duct
wall is acoustically treated with a normally reacting dissipative lining. The boundary condition of

‘ Myers [7] is manipulated, using identities of vector calculus suggested by Moehring [6], to make
it possible to establish reciprocity in this case.

The reverse flow reciprocity theorem is developed in detail in references [1] and [2] and
the results are briefly summarized here. Figure 1 shows a non-uniform duct section bounded on
either end by uniform sections (long enough to have essentially uniform flow so that acoustic
propagation can be synthesized in terms of duct modes). At the two ends of the duct the acoustic
field is the superposition of modes propagating to the right and to the left (including cut off
modes which technically do not propagate, but which can be segregated into right and left
modes). Amplitudes an* and a_  referto right and left modes at theend x = 0 and b

and b~ refer to right and left modesat x =L . a”,a” ,b", b ", are vectors of modal

amplitudes. These modal amplitudes are related by the scattering matrix [S] according to
a’ a’
=[S 1
MR 0
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The scattering matrix is defined as

5 B -
(T] [R]

Contained in [S] are the usual reflection matrix [R] and transmission matrix [77] for acoustic
modes incident at x = 0 and reflection and transmission matrices [R] and [T] for modes
incident at x = L. In multi-modal propagation the scattering matrix relates all modes which are
considered. In the case of one dimensional propagation (the long wave length approximation),
the scattering matrix relates only two modal amplitudes at each end. The reflection and
transmission matrices are scalars, defined as reflection and transmission coefficients.

In the context of reversed flow reciprocity there is a scattering matrix [S,] for nominal
mean flow and a second one [S,] for reversed flow. It is the relationship between [S,] and,
[S,] which is considered in [1,2]. Modal amplitudes in the present discussion are in terms of
acoustic potential duct modes, because the acoustic field equations are naturally in terms of

‘acoustic potential. Equivalent results are obtained in [1,2] for acoustic pressure modal amplitudes
and it is only necessary at this point to refer to the properties of the acoustic potential scattering
matrices.

The reverse flow reciprocity principle 1s

(5, [(V1le] = [V1[«]LS,] 3)
or

1le]10S,] = (VIS (4)

The diagonal matrices [J] and [«] are scaling matrices which have elements depending on
the mode considered. The evaluation of these matrices is covered in detail in [1,2].

Equations (3) and (4) show that a weighted version of the nominal flow acoustic potential
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scattering matrix and similarly weighted version of the reversed flow acoustic potential scattering
matrix are transposes of one another. In terms of the acoustic potential reflection and

transmission coefficient matrices the result is

[R 11,1 [2,] = [, [ ] [R,] 5)
(R 1,1(e,] = [V, [, 11R,] ()
(7,07 17,) (] = [, [ ] (7] @)

®)

[T [0 [, = (V] [} [T,]

Subscripts 0 and L refer to the evaluation of the relevant scaling coefficients at the two ends
‘x =0and x = L. The reciprocal relationships of equations (5)-(8) involve acoustic potential
reflection and transmission coefficient matrices, with diagonal elements representing reflection
and transmission coefficients in the incident modes (here referred to as direct reflection or
transmission) and off diagonal reflection and transmission coefficients from the incident mode to
another mode. Equations (5) and (6) show that direct acoustic potential reflection coefficients
are invariant in reversed flow. The transmission coefficient matrix pairs [7], [T,] and

[T‘l] , [f’z] are not reciprocally related but the pairs  [7], [T’z] and [f1] , [T,] are related
by equations (7) and (8). The notation convention uses the subscripts 1 and 2 to denote flow
direction (1 being nominal, 2 being reversed). Tilde, or lack thereof denotes source location (tilde
denoting source location reversal).

In the one dimensional approximation [2] the same reciprocal relations apply, but

in a simplified form. Reflection coefficients in nominal and reversed flow are invariant:
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R =R 9

R =& (10)
Scaled transmission coefficients are invariant to simultaneous flow reversal and source plane
reversal:
b - P, :
TIALC_ - on'C_ (11)
L "o
. P,
TzAL'C_ = 1AO—C—— (12)
L Ty

In the case of one dimensional propagation there are additional results which can be
deduced based on reciprocity and energy conservation. Power transmission coefficients T

‘are defined as the ratio of transmitted power to incident power. It is found that
T =T =T =T, (13)

Here, as in the previous discussion the subscripts 1 and 2 refer to flow direction and the tilde or
lack thereof refers to source location. Power transmission coefficients are invariant to flow

reversal and source location reversal. That is, the power transmission coefficient is the same for
flow in either direction, for a source at either end of the duct. Power reflection coefficients RTt

are defined as the ratio of reflected power to incident power. It is also found that
R =R =R =R_. (14)

1 2 1 2

Power reflection coefficients are invariant to flow reversal and source location reversal.
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The results summarized by equations (5)-(14) are interesting theoretically and also
provide useful benchmarks which can be used to validate propagation calculations. In the
following sections two finite element codes for duct propagation, one multi-modal and the other

one dimensional, are used to demonstrate several of these reciprocal relations.
ACOUSTIC PROPAGATION IN A COMPRESSIBLE POTENTIAL FLOW

Reciprocity relations previously described will be verified by computations based on two
FEM codes for duct propagation, one for multi-modal propagation and the other specialized for
one-dimensional propagation. In this section only a brief description of the multi-modal
propagation code will be given. Details of the FEM modeling approach can be found in
references {8,9].

A formulation in terms of acoustic potential is used to produce a weak formulation
suitable for finite element discretization to reduce the field equations to a single scalar vanable.
The geometry of the duct in Figure 1, and the steady flow field is axially symmetric. The

“acoustic field is not axially symmetric but is represented as azimuthally periodic in a cylindrical
coordinate system with x being the axis of symmetry, » the cylindrical radius in a circular
cross section at x = 0, and O the angular coordinate. Solutions are sought in angular harmonics
of a Fourier Seriesin 6 enumerated by the angular mode number m . This reduces the solution
domain to a two dimensional x ,  plane, shown in Figure 1. The duct shape ina 8 = constant
plane shows the surface S which defines the duct shape and could include an inner surface for
an annular duct. Part of §' includes S, whichisa locally reacting acoustic treatment.

The acoustic field is assumed to be harmonic in time at non-dimensional frequency n .
Geometry is non-dimensional based on a reference length genera'lly chosen as the radius of the
inlet at the source plane, R. Acoustic and steady flow variables are non-dimensional based on
reference values of the speed of sound and density of the medium, p_, c_, generally defined at
the plane of the acoustic source. The non-dimensional frequency is 1= w R /c_, with wthe
harmonic source frequency.

Field equations for continuity and momentum and the isentropic equation of state are
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used in a weighted residual statement to obtain an integral formulation which is then written in
discrete form using standard FEM procedures. In terms of acoustic potential the weak

formulation is

p B} ) 3 )
[[[ZA2VW9 ~ (P IW)(F, V) + in, [F(V, V) - (7, VI)¢] -nIW AV
v: C,

= ffi;{chWvd) - VrW(I;:rV(b) - lnr I;;rW(b}ﬁdS (15)
c

s° ¢,

where the local non-dimensional steady flow velocity is I7'r = V(br , with d)r the non-
dimensional steady flow velocity potential. The local non-dimensional density and speed of .
sound are p_, ¢ . The surface integral on the right hand side introduces the noise source and
termination conditions on §, or §, anda possible impedance boundary condition on § inside
‘the duct. In the present investigation it is the impedance boundary condition which is of interest
on S ,a portion of S. In equation (15), the weighted residuals statement, W represents an
arbitrary weighting function selected from the class of continuous functions. In this weak
formulation the approximation to the solution ¢ is also chosen from the class of continuous
functions

At a duct wall the mean flow is tangential to the wall and I7'r -7 = 0 causing the
boundary integral (the contribution to the right hand side of equation (1) related to the impedance

condition) to become

I = ”p WV -fdS (16)
Sw

It is shown in [10 ] that at a wall of admittance 4 the weighted residual boundary integral of

equation (16) on the duct surfaceS derived from the Myers boundary condition [7], 1s
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I = —fprz{in W+ WV -V -V -VW - ,L(I?-vm(r?-wp)}ds (17)
b ] r r r r ”’l, r r

w

An accurate representation of this impedance boundary condition is essential to obtaining
verification of reciprocal relationships when acoustic treatment is inserted in the duct wall {10].
References [8,9 ] deal with propagation and radiation to the far field from open ended ducts. In
the code described here, rather than model radiation to the far field from the open end, imposes
non-reflecting boundary condition at the termination. The boundary integral of equation (15) is
used to introduce the source (at either end of the duct) as a superposition of acoustic potential
duct modes and to implement the non-reflecting boundary condition based on another
superposition of duct modes. The one-dimensional code is based on the one-dimensional field
equations [2], and therefore has no provision for acoustic treatment. Other details of this code are
similar to the multi-modal code. In both cases the steady mean flow field which is required data
for propagation calculations is provided by an FEM potential flow code which introduces
.compressibility by iteration of successive incompressible flow problems. Steady flow is
produced on the acoustic FEM mesh for convenience of data transfer.

The FEM duct codes provide solutions for the acoustic potential field which is post-
processed to obtain acoustic pressure. Included as part of the solution are the acoustic potential
modal amplitudes a”,a”,b", b . These are also converted to acoustic pressure modal
amplitudes. Additional post-processing produces computations of acoustic power and power

reflection and transmission coefficients.
NUMERICAL EXPERIMENTS ON RECIPROCITY

The first numerical verification of the reciprocal characteristics of the scattering matrix
for an axially symmetric duct has been carried out in the case of a duct with a transition from
annular to circular, as shown in an x, r slice in Figure 2. The interior contour is that of a typical

turbofan inlet and the uniform extensions are added to meet the requirements of the present
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analysis (uniform flow and proper definition of acoustic eigenfunctions). The finite element
mesh used in the computations is shown on this figure and is typical for examples cited here. The
conditions for the “nominal” case are standard atmospheric conditions at the source plane (x = 0
), Mach number at the source plane M, = 0.27 , directed left to right (opposite to the direction
in an inlet). The non-dimensional frequency (based on the source plane) is n_ = 10 . In the
nominal case the input plane for scattering is the source plane at x = 0 . Figure 3 shows iso-
potential contours for the steady compressible flow in the duct which varies roughly between

M =027 and M = 0.15. Figure 3 is unaltered in form for reverse flow (right to left and in the
direction expected in an inlet). The acoustic analysis is based on input modes with angular
dependence m = 3, for which there exist two propagating modes at each end of the duct (n=1,
n=2).The third mode, n=3, is cut off at both ends of the duct with cut-off ratio & = 0.87 at
x=0and £ =084 at x =L . Two cases of duct wall characteristics are studied. In the
first case the duct walls are acoustically hard, that is the impedance is infinite and the admittance
vanishes. In the second case the outer duct wall is acoustically treated from x = 1.0 through
80 % of the non-uniform section. The impedance is chosen as Z = 2.0 - 1.0/, which is not
'optimum for attenuation for the given conditions, but is not untypical for aircraft applications.
The acoustic power attenuation with the simplest radial mode incident (m=3, n=1) is about 9 dB,
so there is a significant decrease in acoustic power from one end of the duct to the other,
attributable to the wall treatment.

To generate the scaled reflection and transmission coefficient matrices in this case input
modes n =1 ,n =2and n =3 are considered. This produces 3 x 3 matrices which include
two propagating modes and one mode which is cut off at both ends. To build the reflection and
transmission matrices to verify equations (5) and (7) it is required to consider nine propagation
cases: three input modes at x = 0 for nominal flow; three input modes at x = 0 for reverse
flow; and three input modes at x = L for reverse flow.

Reference to contours of equal acoustic pressure provide evidence of the differences
induced by varying the source mode number, source location and the flow direction. Figure 4
shows acoustic iso-pressure contours for the duct with acoustic treatment when the input radial

modeat x =0 is n = 1. There is significant scattering and this is verified by reference to the

9
178



scattering coefficients. Figure 5 shows the case of mode » =3 inputat x =L in reverse
flow. This mode is cut off at both ends, and it should be noted how rapidly the acoustic pressure
level is attenuated away from the source plane.

Table 1 shows the scaled acoustic potential reflection coefficient matrix in nominal flow
with the scattering plane (acoustic source plane) at x = 0 , which corresponds to the left hand
side of equation (5). Table 2 is the reflection matrix at x = 0 in reversed flow, corresponding to
the right hand side of equation (5). Equation (5) predicts that these matrices should be

reciprocals of one another. Tables 1 and 2 verify this with exéeptional accuracy.

mode 1 2 3
1 -0.14380 - 0.030981 -0.13986 + 0.072171 -0.153(-4) - 0.549(-5) 1
2 -0.13746 + 0.713231 -0.04113 + 0.205721 0.104(-3) +0.732(-5) 1
3 -0.424(-5) + 0.841(-5)i | -0.144(-4) - 0.903(-4) 1 -0.682(-5) + 0.497(-8) i

‘Table 1. Scaled acoustic potential reflection coefficients for nominal flow and sourceat x =0

for the transition from an annular to circular hard wall duct. Corresponds to the left hand side of

equation (5). n_ = 10 , m =3.

mode 1 2 3
1 -0.14380 - 0.030981 -0.13746 + 0.713231 | -0.424(-5) +0.841(-5) 1
2 -0.13986 + 0.072171 -0.04113 + 0.205721 |-0.144(-4) - 0.903(-8) 1
3 -0.153(-4) - 0.549(-5)1 0.104(-3) + 0.732(-5)1 | -0.682(-5) + 0.497(-8)1

Table 2. Scaled acoustic potential reflection coefficients for reverse flow and source at x = 0

for the transition from an annular to circular hard wall duct. Corresponds to the right hand side of

equation (5). n_=10 , m = 3.

Tables 3 and 4 verify the prediction of equation (7). Table 3 gives the scaled acoustic

potential transmission coefficients in nominal flow with the source at x = 0 . Table 4 gives the

10

179



scaled transmission coefficients in reversed flow with the source shifted to x = L . Equation (7)

predicts a reciprocal relationship which is accurately substantiated in Tables 3 and 4. A point of

interest in the results shown in Tables 1 through 4 is that reciprocity extends to cutoff modes in

which case the power transmission is only accounted for by interaction of left and right modes.

mode 1 2 3
1 -4.12246 + 0.005321 -0.56880 + 0.232811 0.151(-4) -0.109(-4)1
2 0.58902 + 0.373761 -1.74565 - 0.275801 0.834(-4) + 0.174(-4) 1
3 -0.300(-4) - 0.897(-4)1 -0.169(-3) + 0.105(-3)i | 0.808(-8) - 0.488(-8) 1

Table 3. Scaled acoustic potential transmission coefficients for nominal flow and source at

x = 0 for the transition from an annular to circular hard wall duct. Corresponds to the left hand

side of equation (7). =10 , m = 3.

| mode 1 2 3
1 -4.12246 + 0.005321 0.58902 + 0.373761 -0.300(-4) - 0.897(-4) 1
2 -0.56880 + 0.238211 -1.74565 - 0.275801 -0.169(-3) - 0.105(-3)1
3 0.151(-4) -0.109(-4) i 0.834(-4) +0.174(-4) 1 0.808(-8) - 0.488(-8) 1

Table 4. Scaled acoustic potential transmission coefficients for reverse flow and source at x = L
for the transition from an annular to circular duct. Corresponds to the right hand side of equation

M. n =10, m=3.

Tables 5 through 8 are for the case with acoustic treatment in place. Table 5 shows the
scaled acoustic potential reflection coefficient matrix in nominal flow with the scattering plane
(acoustic source plane) at x = 0 , and with the nonuniform portion of the duct outer wall
acoustically treated. This corresponds to the left hand side of equation (5). Table 6 1s the
reflection matrix at x = 0 in reversed flow, corresponding to the right hand side of equation (5)

for the same acoustic treatment configuration. Equation (5) predicts that these matrices should

11
180



be reciprocals of one another. Tables 5 and 6 verify this, again with exceptional accuracy.

mode 1 2 3
1 0.16904 - 0.239001 -0.12975 -0.180141 -0.482(-3) - 0.677(-4) 1
2 -0.07368 - 0.101331 -0.00984 - 0.034951 -0.275(-3) +0.950(-4) i
3 -0.305(-3) + 0.632(-5) 1 -0.283(-3) + 0.556(-5) i -0.693(-5) + 0.510(-6) i

Table 5. Scaled acoustic potential reflection coefficients for direct flow and source at x = 0 for
the transition from an annular to circular acoustically treated duct. Corresponds to the left hand

side of equation (5). n, = 10 , m = 3.

mode 1 2 3
1 0.16904 - 0.23900 1 -0.07368 -0.10133 1 -0.305(-3) + 0.632(-5) 1
2 -0.12975 - 0.180141 -0.00984 -0.034951 -0.283(-3) + 0.556(-5) 1
3 -0.482(-3) -0.677(-4) 1 -0.275(-3) + 0.950(-4) 1 -0.693(-5) + 0.510(-6) 1

Table 6. Scaled acoustic potential reflection coefficients for reverse flow and source at x =0
for the transition from an annular to circular acoustically treated duct. Corresponds to the right

hand side of equation (5). n =10, m = 3.

Tables 7 and 8 verify the prediction of equation (7) in the case of an acoustically treated
outer wall. Table 7 gives the scaled acoustic potential transmission coefficients in direct flow
with the source at x = 0 . Table 8 gives the scaled transmission coefficients in reversed flow
with the source shifted to x = L . Equation (7) predicts a reciprocal relationship which is
accurately substantiated in Tables 7 and 8. Again, the applicability of the reciprocity principle to

cut-off modes is verified.
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mode 1 2 3
1 -1.21549 +0.02495 1 -0.25788 + 0.60030 1 0.780(-4) - 0.227(-3) 1
2 0.38577 - 0.375571 -0.76395 + 0.24663 1 0.146(-3) - 0.741(-4) 1
3 -0.319(-4) - 0.753(-4) 1 -0.532(-4) + 0.849(-4) 1 0.109(-7) - 0.205(-7) 1

Table 7. Scaled acoustic potential transmission coefficients for direct flow and source at x = 0

for the transition from an annular to circular acoustically treated duct. Corresponds to the left

hand side of equation (7). =10, m = 3.

mode 1 2 3
1 -1.21549 +0.02495 1 0.38577 -0.375571 -0.319(-4) -0.753(-4) 1
2 -0.25788 + 0.60030 1 -0.76395 + 0.24663 1 -0.532(-4) + 0.849(-4) 1
3 0.780(-4) - 0227(-3) 1 0.146(-3) - 0.741(-4) 0.109(-7) - 0.205(-7) 1-

Table 8. Scaled acoustic potential transmission coefficients for reverse flow and source at x = L
for the transition from an annular to circular acoustically treated duct. Corresponds to the left

hand side of equation (7). =10 , m = 3.

The next case considered involves a steady flow in which the Mach number becomes
relatively high, emphasizing the dependence of the acoustic treatment boundary condition on
Mach number. An additional complication introduced here is the segmenting of the acoustic
treatment into two equal length parts with different impedances, spanning the entire transition
section. A continuous transition occurs within one element of the FEM mesh. The impedances in
this case are Z, = 2.0 - 1.0/, Z, = 3.0 - 2.0/ (numbered left to right) . This satisfies
the requirement of the reciprocity theorem and also simulates a near discontinuity of impedance.
Here a converging duct with a contraction ratio of o = 0.5, as shown in Figure 6, accelerates the

flow (iso-potential contours are shown on Figure 6) from a Mach number at the nominal source

plane of M =0.13 to M = 0.71 at the exit plane. An acoustic propagation analysis has been
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carried out for the non-dimensional frequency n_ = 10 for a source with angular mode m = 3.
In this geometry and the resulting steady flow there are two propagating modes at x = 0
(determined in the hard wall case), but just one propagating mode at x = L . Results given here
are for scaled potential reflection and transmission matrices. 3 x 3 reflection and transmission
matrices are investigated by considering input radial modes n =1 ,n=2,and n=3. At
x = 0 the two propagating modes and one cut-off mode have cut-off ratios

£=240,F =126, & =0.89, respectively. At x = L the single propagating mode and two
cut off modes have cut-off ratios £ =1.65, & =0.87 , £ = 0.61. An interesting feature of
this geometry and flow is that mode #n = 2 makes a transition from cut on to cut off in going
from left to right. Mode n =3 isdeeply cutoffat x = L .

Figure 7 shows acoustic iso- pressure contours for the case of nominal flow (left to right)
with the mode n =1 inputat x =0 . The contours are consistent with a well cut on mode
and significant scattering. Figure 8 shows contours for the case of reverse flow (right to left).
with the source at the end x = L , and the input mode 7 = 3 . This mode is deeply cut off and
it should be noted how rapidly the acoustic pressure levels decay away from the source plane. It
can be concluded that this mode effectively produces no acoustic pressure at x =0 .

Tables 9 through 12 are presented to verify the predicted reciprocal characteristics of the
scaled acoustic potential reflection and transmission coefficients. Tables 9 and 10 show the
scaled pressure reflection coefficients for nominal flow (left to right) and reverse flow (right to
left) with the source at x = 0 . These correspond with the left and right hand sides of equation

(5). The reflection matrices shown in these two tables are seen to be reciprocals, as predicted.
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mode 1 2 3
1 0.16566 + 0.115291 0.23310 + 0.05472 1 -0.00056 - 0.00099 1
2 0.20720 + 0.09263 1 -0.02814 +0.01965 1 0.00035 -0.00035 1
3 -0.00044 - 0.00067 1 -0.00069 -0.001111 -0.291(-4) + 0.286(-5) 1

Table 9. Scaled acoustic potential reflection coefficients for direct flow and source at x = 0 for
the converging circular acoustically treated duct. Corresponds to the left hand side of equation

(5).n =10, m=3.

mode 1 2 3
1 0.16566 + 0.115291 0.20720 + 0.09623 i -0.00044 - 0.00067 i
2 0.23310 + 0.05472 1 -0.02814 +0.01965 1 -0.00069 -0.001111
3 -0.00056 - 0.00099 1 0.00035 -0.000351 -0.291(-4) + 0.286(-5)"1

Table 10. Scaled acoustic potential reflection coefficients for reverse flow and source at x = 0
for the converging circular acoustically treated duct. Corresponds to the right hand side of

equation(5). n =10 , m = 3.

Tables 11 and 12 show the scaled potential transmission coefficients for nominal flow
(left to right) with the source plane at x = 0 and reverse flow (right to left) with the source at
x=1L .V These correspond with the left and right hand sides of equation (7). The reflection
matrices shown in these two tables are seen to be reciprocals for modes =1,n=2.
Reciprocity involving mode n = 3 seems to fail. The reason for this can be deduced by
referring back to Figure 8 and noting that the deeply cut off mode » =3 creates acoustic
pressure levels at x = 0 which are probably unresolvable with accuracy by the numerical
model. To test this hypothesis, another test of reciprocity with the same geometry, flow, and
mode number was carried out, but with the non-dimensional frequency increased to 1= 12
(fromn_ =10). This changes the cut-off ratios for themodes n=1,n=2,n=3 to
£=288,£=151,£=107 at x=0ad §=198,5=104,£=073 at x=1L.
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This makes three propagating modes at the left end and two propagating modes at the right end,

and retains the interesting feature of the transition from cut on to cut off for mode # =3 Ina

transition from left to right, or from cut off to cut on in the opposite direction.

mode 1 2 3
1 -0.18538 +0.24017 i 0.04016 +0.13443 i -0.223(-5) - 0.286(-6) 1
2 0.374(-4) - 0.570(-4) 1 -0.115(-4) - 0.288(-4) 1 0.110(-8) -0.344(-8) 1
3 -0.521(-7) + 0.116(-6) 1 0.301(-7) - 0.507(-7) 1 0.260(-11) + 0.595(-11)1

Table 11. Scaled acoustic potential transmission coefficients for direct flow and source at x = 0

for converging circular acoustically treated duct. Corresponds to the left hand side of equation

M. n =10, m=3.

| mode 1 2 3
1 -0.18538 +0.24017 1 0.374(-4) - 0.570(-4) 1 -0.521(-7) +0.116(-6) 1
2 0.04016 +0.13443 1 -0.115(-4) - 0.288(-4) 1 0.301(-7) + 0.507(-7) 1
3 0.00014 - 0.00005 1 0.332(-7) + 0.961(-8) i -0.644(-10) - 0.770(-11) 1

Table 12. Scaled acoustic potential transmission coefficients for reverse flow and source at

x = L for the converging circular acoustically treated duct. Corresponds to the left hand side of

equation (7). M, = 10, m=3.
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mode 1 2 3
1 -0.08862 +0.41280 1 0.31074 -0.053621 0.03674 + 0.06580 1
2 -0.02353 - -0.00062 1 0.02811 -0.03804 1 0.00839 -0.003041
3 0.877(-5) - 0.791(-5) 0.0255(-5) + 0.237(-4) 1 | -0.208(-5) + 0.397(-5) 1

Table 13. Scaled acoustic potential transmission coefficients for direct flow and source at x = 0
for converging circular acoustically treated duct. Corresponds to the left hand side of equation

M. n =12, m=3.

mode 1 2 3
1 -0.08862 +0.41280 1 -0.02353 - 0.00062 1 0.877(-5) - 0.791(-5) 1
2 0.31074 -0.053621 0.02811 -0.03804 1 0.255(-5) +0.237(-4) 1
3 0.03674 + 0.06580 1 0.00839 -0.00304 1 -0.208(-5) +0.397(-5) 1

Table 14. Scaled acoustic potential transmission coefficients for reverse flow and source at
x = L for the converging circular acoustically treated duct. Corresponds to the left hand side of

equation (7). n =12, m = 3.

Figure 9 shows acoustic iso-pressure contours for the case of reverse flow, with the
source at the rightend with n =3 and n_=12 . The contour levels show that at the left end
the acoustic pressure levels are substantially higher than those shown in Figure 8, and they are
more accurately resolved by the modeling scheme.

Tables 13 and 14 show the scaled potential transmission coefficients for nominal flow
(left to right) with the source plane at x = 0  and reverse flow (right to left) with the source at
x = L . The non-dimensional frequency is 7 = 12. Now reciprocity is satisfied (a reciprocal

relationship of the scaled transmission matrices) to a high level of accuracy. It is concluded that
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accurate resolution of the acoustic field of the deeply cut off mode n = 3 . This warns that there
is a practical limit beyond which reciprocity may not be verifiable for cut off modes.

A final example considers the converging circular duct profile previously shown in
Figure 6 with the same steady flow Mach number, but in this case treated as one dimensional.
Inlet and exit Mach numbers for the nominal flow are M = 0.13 and M = 0.71. Acoustic
propagation is also taken to be one dimensional at non-dimensional frequency n_ = 1.0 based
on a reference length which is the radius (of an assumed circular cross section) of the duct at the
nominal source plane x = 0. This scaling makes everything consistent with the axially
symmetric duct formulation. Propagation at the chosen frequency has been modeled by the
axially symmetric formulation using angular mode m = 0 and radial mode n = 1. Iso-
potential contours for the steady flow are shown in Figure 6 and iso-acoustic pressure contours
are shown in Figure 10 (with longer uniform extensions at the two ends, as compared to Figure
6). Because of the duct contour and steady flow there is noticeable deviation from true one
dimensional propagation, however there is no indication of substantial scattering into higher
order modes, which the one dimensional theory necessarily excludes.

Table 15 is a summary of the reciprocity and power invariance benchmark tests which are
available in the one dimensional case. The results of (a) and (b) substantiate the reciprocity
statement of equation (9) and the results of (c) and (d) substantiate the reciprocity statement of
equation (11). The power results (€)-(1) substantiate the observations based on power
considerations that power reflection and transmission coefficients are independent of flow
direction and source location (equations (13) and (14)). As an indication of the comparison
between the axially symmetric (3-Dim) duct model and the one dimensional model, power
reflection and transmission coefficients for the axially symmetric model are shown also. The
invariance of the power transmission and reflection coefficients to flow direction and source
location is true (numerically) at low frequencies in the axially symmetric duct and the one
dimensional predictions of reflection and transmission characteristics quite favorably correlate
with predictions of the axially symmetric model. The properties of invariance of the power
reflection and transmission coefficients is not generally true at higher frequencies in the axially

symmetric model when scattering into higher or lower modes occurs.
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Coefficient

3-Dim

1-Dim

1-Dim

(a). Reflection coefficient,

direct flow, source left

0.430129 + 0.050053 1

(b). Reflection coefficient,

reverse flow, source left

0.430129 + 0.050053 1

(c). Scaled transmission coefficient,

direct flow, source left

0.384607 + 0.1453701

(d). Scaled transmission coefficient,

reverse flow, source left

0.384607 + 0.145370 1

(e). Power reflection coefficient,

direct flow, source left:

0.171105

0.187517

(f). Power reflection coefficient,

reverse flow, source left

0.171105

0.187517

(g). Power reflection coefficient,

direct flow, source right

0.171105

0.187517

| (h). Power reflection coefficient,

reverse flow, source right

0.171105

0.187517

flow, source left

(1). Power transmission coefficient, direct

0.828895

0.812483

flow, source left

(j). Power transmission coefficient, reverse

0.828895

0.812483

flow, source right

(k). Power transmission coefficient, direct

0.828895

0.812483

flow, source right

(1). Power transmission coefficient, reverse

0.828895

0.812483

Table 15. Summary of scattering matrix reciprocity and power invariance benchmark tests for a

one dimensional converging duct, with power invariance comparisons for an axially symmetric

model. M = 0.13, M, = 071, m, =10 (m = 0 , n = 1 in the axially symmetric case).
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CONCLUSION

Numerical verification of the reciprocal relationships derived in References [1,2] has
been accomplished using a finite element model for duct propagation. Three cases have been
presented for an axially symmetric duct model, one introducing the feature of transition from an
annular to a circular duct without and with acoustic treatment, and the second introducing a
converging duct with substantial steady flow acceleration and segmented acoustic treatment. A
fourth case is presented for the converging duct at low frequéncy where a one dimensional
model of propagation is appropriate. Reciprocal characteristics of the scattering matrices are
verified with exceptional accuracy, as are predicted relationships for power reflection and

transmission coefficients in the one dimensional case.
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